

Città metropolitana di Torino

Regione Piemonte

INTERVENTI DI ADEGUAMENTO E RIFUNZIONALIZZAZIONE DELL' IMPIANTO SPORTIVO DEL BASEBALL DI VIA TORINO DESTINATO AI CAMPIONATI EUROPEI DI BASEBALL E SOFTBALL 2021

PROGETTO ESECUTIVO

Tav. n. 04 RIM Oggetto Relazione specialistica impianti Scala - fluidomeccanici di verifica energetica

Per lo sviluppo locale SAT s.c. a r.l. - p.zza della Libertà, 4 - 10036 Settimo T.se - Tel. 039-011 8028711

Rev. Agg.	Data	Descrizione	Redazione	Direttore Tecnico SAT s.c. a r.l.: arch. Milena QUERCIA	
00	Ottobre 2020	Prima emissione		Coordinamento progettuale SAT s.c. a r.l.:	
				arch. Milena QUERCIA	
				Progettisti:	
				Architetto Paolo Pettene & Partners	
				ARCHITETTO PAOLS RETTENE & PARTNERS S.T.P. srl Via Gorizia 4.0036 Porinto (no.) NALY Tel +39 0119430655 www.studiopettene.com	
				Arch. PAOLO PETTENE n° 6863 PaolòPetrene «Partners	
COD: 8	355-20	FN:		RC: mq RP: mt	

NON E' PERMESSO CONSEGNARE A TERZI O RIPRODURRE QUESTO DOCUMENTO NE' UTILIZZARNE IL CONTENUTO O RENDERLO COMUNQUE NOTO A TERZI SENZA L'AUTORIZZAZIONE ESPLICITA DI SAT s.c. a r.l. OGNI INFRAZIONE COMPORTA IL RISARCIMENTO DEI DANNI SUBITI. E' FATTA RISERVA DI TUTTI I DIRITTI DERIVANTI DA BREVETTI.

LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA Decreto 26 giugno 2015

COMMITTENTE : Comune di Settimo T.se

EDIFICIO : Spogliatoi Stadio Baseball Valter Aluffi

INDIRIZZO: Via Torino, sn - 10036 Settimo T.se

COMUNE : Settimo Torinese

INTERVENTO : **Prefabbricati ad uso spogliatoi**

Rif.: Settimo_Spogliatoi_2020-10-14.E0001

Software di calcolo : *Edilclima - EC700 - versione 10*

BOTTAN ING. GIAN PAOLO VIA GAVUZZI, 4 - 10048 VINOVO (TO)

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

1. INFORI	MAZIONI GENERALI				
Comune di	Settimo Torinese		Pı -	rovincia	то
Progetto per I	a realizzazione di (specificare il	tipo di opere):			
Prefabbricat	i ad uso spogliatoi				
fini dell	articolo 5, comma 15, del decr	tra tra quelli di proprietà pubblica reto del Presidente della Repubblic a) e dell'allegato I, comma 14 del	a 26	agosto 1	1993, n. 412
gli estremi de	I censimento al Nuovo Catasto	va, indicare che è da edificare nel Territoriale):	terren	o in cui s	si riportano
Via Torino, s	n - 10036 Settimo T.se				
Richiesta perr	nesso di costruire		del	14/10/	/2020
Permesso di d	ostruire/DIA/SCIA/CIL o CIA		del	14/09/	/2020
Variante perm	nesso di costruire/DIA/SCIA/CIL	o CIA	del	14/09/	/2020
decreto del appartenenti	Presidente della Repubblica 2 a categorie differenti, specificare	o di edifici) in base alla categoria 26 agosto 1993, n. 412; per e e le diverse categorie): servizi di supporto alle attività spo	edifici		
Numero delle	unità abitative 2				
Committente	(i)	Comune di Settimo T.se			
		Piazza della Libertà 4 - 10036	Sett	imo T.se	e (TO)
Progettista de	ll'isolamento termico	Ingegnere BOTTAN GIAN PA	01.0		
		Albo: Torino Pr.: Torino N.iscr.:		3 L	

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

Ze64 GG

Temperatura esterna minima di progetto (secondo UNI 5364 e successivi aggiornamenti)

-7,8 °C

Temperatura massima estiva di progetto dell'aria esterna secondo norma

31,0 °C

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE

a) Condizionamento invernale

RELATIVE STRUTTURE

Descrizione	V [m³]	\$ [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	φ int [%]
Spogliatoi ospiti	296,33	325,88	1,10	77,00	24,0	65,0
Spogliatoi casa	296,46	325,91	1,10	77,15	24,0	65,0
Spogliatoi Stadio Baseball Valter Aluffi	592,80	651,79	1,10	154,15	24,0	65,0

Presenza sistema di contabilizzazione del calore:

b) Condizionamento estivo

Descrizione	V [m³]	\$ [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	φ _{int} [%]
Spogliatoi ospiti	296,33	325,88	1,10	77,00	24,0	51,3
Spogliatoi casa	296,46	325,91	1,10	77,15	24,0	51,3
Spogliatoi Stadio Baseball Valter Aluffi	592,80	651,79	1,10	154,15	24,0	51,3

Presenza sistema di contabilizzazione del calore:

- V Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- θ_{int} Valore di progetto della temperatura interna
- φint Valore di progetto dell'umidità relativa interna

c) Informazioni generali e prescrizioni

[]

[]

Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m: []
Motivazione della soluzione prescelta:
Non presente.
Livello di automazione per il controllo la regolazione e la gestione delle tecnologie dell'edificio e degli impianti termici (BACS, minimo classe B secondo UNI EN 15232)
La regolazione degli impianti prevede la gestione mediante utilizzo del controllo dei parametri di funzionamento dei generatori di calore mediante curva climatica in funzione della temperatura esterna.
Adozione di materiali ad elevata riflettanza solare per le coperture:
Valore di riflettanza solare >0,00 >0,65 per coperture piane
Valore di riflettanza solare >0,40
Motivazione che hanno portato al non utilizzo dei materiali riflettenti:
Adozione di tecnologie di climatizzazione passiva per le coperture:
Motivazione che hanno portato al non utilizzo:
Adozione di misuratori di energia (Energy Meter): []
Descrizione delle principali caratteristiche:
L'impianto fotovoltaico sarà dotato di misuratori di energia elettrica prodotta.
Adozione di sistemi di contabilizzazione diretta del calore, del freddo e dell'ACS:
Descrizione dei sistemi utilizzati o motivazioni che hanno portato al non utilizzo:
Non sono previsti sistemi di contabilizzazione e non è previsto il raffrescamento estivo.
Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cu all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.
Descrizione e percentuali di copertura:
Si prevede l'installazione di pompe di calore Aria/Acqua per la produzione di ACS e riscaldamento abbinata all'impianto fotovoltaico di nuova installazione.
Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:
Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di $[X]$ climatizzazione invernale:
Motivazioni che hanno portato al non utilizzo:
Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che intern presenti:

5. DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto a fonte rinnnovabile dotato di pompa di calore elettrica condensata ad aria abbinata al fotovoltaico. Sistema di circolazione dei fluidi direttamente a bordo della pompa di calore.

Sistemi di generazione

Pompa di calore elettrica.

Sistemi di termoregolazione

Sonda di temperatura ambiente con segnale di comando per la pompa di calore.

Sistemi di contabilizzazione dell'energia termica

Non necessari in quanto unico utente dell'utenza associata al POD.

Sistemi di distribuzione del vettore termico

Distribuzione principale costituita da dorsali a due tubi multistrato precoibentate le quali si diramano ai singoli collettori di zona. Distribuzione interna da collettori complanari con tubazioni di mandata e ritorno ad ogni singolo circuito.

Sistemi di ventilazione forzata: tipologie

E' prevista la ventilazione dei blocchi servizi mediante semplici estrattori a parete.

Sistemi di accumulo termico: tipologie

Sistema inerziale da 300 litri per ottimizzare il funzionamento della pompa di calore.

Sistemi di produzione e di distribuzione dell'acqua calda sanitaria

Bollitore collegato al circuito pompa di calore. Sistema di regolazione della temperatura di mandata con valvola a tre vie e reti di distribuzione mandata ACS e ricircolo ACS.

Trattamento di condizionamento chimico per l'acqua, norma UNI 8065: [X]

Presenza di un filtro di sicurezza: [X]

b) Specifiche dei generatori di energia

Installazione di un contatore del volume di acqua calda sanitaria: [X]

Installazione di un contatore del volume di acqua di reintegro dell'impianto: [X]

Zona **Spogliatoi ospiti** Quantità **1**

Servizio Riscaldamento e acqua calda Eluido termovettoro Acqua

sanitaria Fluido termovettore Acqua

Tipo di generatore Pompa di calore Combustibile Energia elettrica

Marca – modello VIESSMANN Srl/Energycal AW PRO AT 7.1-41.1/Energycal AW

PRO AT 26.1

	nte di presta	in riscaldamento zione (COP)		24,7 4,26	_ kW _		
Temperat	ture di riferii	mento:					
Sorgente	fredda	7,0	- °C	Sorgente calda	_	35,0	°(
Zona	Spogliato	oi casa		Quantità		1	
Servizio	Riscaldar sanitaria	nento e acqua ca	alda	Fluido termo	vettore	Acqua	
Tipo di ge	eneratore	Pompa di calore	9	Combustibile	9	Energi	a elettr
Marca – r	modello	VIESSMANN S PRO AT 26.1	SrI/Ene	rgycal AW PRO Al	7.1-41	.1/Energ	ycal AV
Tipo sorg	ente fredda	Aria esterna					
Potenza t	ermica utile	in riscaldamento		24,7	kW		
Coefficier	nte di presta	zione (COP)		4,26	_		
Temperat	ture di riferii	mento:					
Sorgente	fredda	7,0	°C	Sorgente calda	_	<i>35,0</i>	°(
utilizzand vigenti no	acchine dive lo le caratte orme tecnich	erse da quelle sop ristiche fisiche del ne.	la specif	ritte, le prestazioni fica apparecchiatura e dell'impianto tel	ı, e appl		
parte, ma utilizzand vigenti no Specifici	acchine dive lo le caratte orme tecnich	erse da quelle sop ristiche fisiche del ne. ai sistemi di reg	la specif	fica apparecchiatura	i, e appl r mico	icando, ov	
parte, ma utilizzand vigenti no Specifica Tipo di co	acchine dive lo le caratte orme tecnich he relative	erse da quelle sop ristiche fisiche del ne. ai sistemi di reg	la specif	fica apparecchiatura e dell'impianto tel	i, e appl r mico	icando, ov	e esistei
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the control of	erse da quelle sop ristiche fisiche del ne. ai sistemi di rege revista [] cont	la specif	fica apparecchiatura e dell'impianto tel n attenuazione nottu	i, e appl r mico	icando, ov	e esistei
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the control of	erse da quelle sop ristiche fisiche del ne. ai sistemi di regu revista [] cont	la specif	fica apparecchiatura e dell'impianto tel n attenuazione nottu	i, e appl r mico	icando, ov	e esistei
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity de la caratte prime tecnich de relative prime di telegestion de la caratte prime di telegestion de la c	erse da quelle sop ristiche fisiche del ne. ai sistemi di reger revista [] cont stiva prevista: sistema di raffre ne dell'impianto te	olazione cinua cor escamer	fica apparecchiatura e dell'impianto tel n attenuazione nottu	r mico urna	[X]	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the relative onduzione produzione estresente un di telegestion mazione o ianto.	erse da quelle sop ristiche fisiche del ne. ai sistemi di regu- revista [] cont stiva prevista: sistema di raffre ne dell'impianto te rari di funzionan	olazione cinua cor escamer ermico, s	e dell'impianto ten n attenuazione nottu	rmico urna ione sint	icando, ov	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the relative on duzione produzione estresente un di telegestion mazione of ianto.	erse da quelle sopristiche fisiche del ne. ai sistemi di regulare la contra	olazione cinua cor escamer ermico, s nento g	e dell'impianto ten n attenuazione nottu nto estivo se esistente (descriz	rmico urna ione sint	icando, ov	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the relative onduzione produzione estresente un di telegestion mazione of ianto. di regolazione of ianto alina climatione of modello	erse da quelle sopristiche fisiche del ne. ai sistemi di regulare la contra	olazione tinua cor escamer ermico, s nento g trale terr Vario Impo	e dell'impianto ten n attenuazione nottu nto estivo se esistente (descriz siornaliera/settima mica (solo per impia	rmico urna ione sint anale ge	etica delle estita dal ralizzati)	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of le caratte prime tecnich comme tecnich conduzione produzione estresente un di telegestion mazione of ianto. di regolazione alina climatione of izione sinteti	erse da quelle sopristiche fisiche del ne. ai sistemi di regulare de l'evista [] contra etiva prevista: sistema di raffre ne dell'impianto te rari di funzionani de climatica in centra de delle funzioni	olazione cinua cor escamer ermico, s nento g trale terr Vario (tem temp	e dell'impianto ten n attenuazione nottu nto estivo se esistente (descriz siornaliera/settima mica (solo per impia	ione sint anale ge	etica delle estita dal ralizzati)	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of the relative onduzione produzione estresente un di telegestion mazione of ianto. di regolazione of ianto di regolazione sinteti oro di livelli di ro di	erse da quelle sopristiche fisiche del ne. ai sistemi di regularevista [] controlle stiva prevista: sistema di raffre ne dell'impianto te rari di funzionani ne climatica in centrolle delle funzioni i programmazione	olazione cinua cor escamer ermico, s nento g trale terr Vario (tem temp	e dell'impianto ten n attenuazione nottu nto estivo se esistente (descriz siornaliera/settima mica (solo per impia	ione sint anale ge	etica delle estita dal ralizzati) tri di funz stato ambre ACS).	e esiste
parte, ma utilizzand vigenti no vi vigenti no vigenti no vigenti no vigenti no vigenti no vigenti n	acchine diversity of le caratte prime tecnich comme tecnich conduzione produzione estresente un di telegestion mazione of ianto. di regolazione alina climatione of izione sinteti	erse da quelle sopristiche fisiche del ne. ai sistemi di regularevista [] controlle stiva prevista: sistema di raffre ne dell'impianto te rari di funzionani ne climatica in centrolle delle funzioni i programmazione	olazione cinua cor escamer ermico, s nento g trale terr Vario (tem temp	e dell'impianto ten n attenuazione nottu nto estivo ne esistente (descriz diornaliera/settima mica (solo per impia ne peratura set poin peratura accumulo emperatura nelle 24	ione sint anale ge	etica delle estita dal ralizzati) tri di funz stato ambre ACS).	e esiste

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi.

Descrizione sintetica dei dispositivi	Numero di apparecchi
Regolazione dei singoli ambienti mediante valvole termostatiche installate sui radiatori	16

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]
Radiatori su parete esterna - Ospiti	8	20000
Radiatori su parete esterna - Casa	8	20000

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Dosatore sostanze filmanti.

h) Specifiche dell'isolamento termico della rete di distribuzione

Descrizione della rete	Tipologia di isolante	λ _{is} [W/mK]	Sp _{is} [mm]
Polistirene espanso	Materiali espansi organici a cella chiusa	0,040	50

λ_{is} Conduttività termica del materiale isolante

Spis Spessore del materiale isolante

i) Specifiche della/e pompa/e di circolazione

			PUNT	O DI LAVO	30
Q.tà	Circuito	Marca - modello - velocità	G [kg/h]	ΔP [daPa]	W _{aux} [W]
1	Ospiti	Grundfos-Magna-variabile	1033,00	3500,00	120
2	Casa	Grundfos-Magna-variabile	1033,00	3500,00	120

G Portata della pompa di circolazione

ΔP Prevalenza della pompa di circolazione

Waux Assorbimento elettrico della pompa di circolazione

j) Schemi funzionali degli impianti termici

Si rimanda agli elaborati di progetto

5.2 Impianti fotovoltaici

Descrizione e caratteristiche tecniche

Impianto fotovoltaico installato in copertura composto da nr. 24 pannelli fotovoltaici da 300 W/cadauno.

Schemi funzionali Si rimanda allo schema unifilare e agli elaborati di progetto.

5.4 Impianti di illuminazione

Descrizione e caratteristiche tecniche

Impiego di LED per tutti i corpi illuminanti in tutti i locali.

6. PRINCIPALI RISULTATI DEI CALCOLI

Edificio: Spogliatoi Stadio Baseball Valter Aluffi

- Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati:
 - Tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici;
 - Gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28.

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
M1	Muro esterno - pannello sandwich 10cm	0,192	0,181
M301	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	0,190
P1	Pavimento	0,196	0,181
S1	Soffitto climatizzati	0,192	0,190

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza media [W/m²K]	Valore limite [W/m²K]	Verifica
M302	Muro per CT ESTERNO - pannello sandwich 10 cm	0,192	0,800	Positiva
M303	Muro per ESTERNO SOTTOTETTO - pannello sandwich 10 cm	0,192	0,800	Positiva
P201	Pavimento CT	0,199	0,800	Positiva
P203	Pavimento sottotetto sopra CT	0,191	0,800	Positiva
S2	Copertura	0,544	0,800	Positiva
<i>S3</i>	Soffitto non climatizzato spo2	0,193	0,800	Positiva

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
M1	Muro esterno - pannello sandwich 10cm	Positiva	Positiva
МЗ	Porta opaca	Positiva	Positiva
M301	Muro per CT INTERNO - pannello sandwich 10 cm	Positiva	Positiva
P1	Pavimento	Positiva	Positiva
S 1	Soffitto climatizzati	Positiva	Positiva

Caratteristiche igrometriche dei ponti termici

Cod.	Descrizione	Verifica temperatura critica	
Z 1	GF - Parete - Solaio controterra	Positiva	
Z2	R - Parete - Copertura	Positiva	

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M1	Muro esterno - pannello sandwich	4	0,188

	10cm		
	TOCH		

Caratteristiche termiche dei componenti finestrati

Cod.	Descrizione	Trasmittanza infisso U _w [W/m²K]	Trasmittanza vetro U _g [W/m²K]
M3	Porta opaca	0,438	-
W1	Porta finestra 90X 210	1,400	1,100
W2	Finestra singola 100X85	1,400	1,100
W3	Finestra doppia 205X80	1,400	1,100

Numero di ricambi d'aria (media nelle 24 ore) – specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Spogliatoi	8,00	1,20
2	Servizi igienici	8,00	2,00

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

Metodo di calcolo utilizzato (indicazione obbligatoria)

UNI/TS 11300 e norme correlate

Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789)

Spogliatoi ospiti	
Superficie disperdente S 325,8	8 m ²
Valore di progetto H' _T	W/m ² K
Valore limite (Tabella 10, appendice A) H' _{T,L}	W/m²K
Verifica (positiva / negativa) Positiva	a
Spogliatoi casa	
Superficie disperdente S 325,9	1 m ²
Valore di progetto H' _T	W/m ² K
Valore limite (Tabella 10, appendice A) H' _{T,L}	W/m²K
Verifica (positiva / negativa) Positiva	<u>a_</u>

Area solare equivalente estiva per unità di superficie utile

Spogliatoi ospiti

Superficie utile A _{sup utile}	77,00	m ²
Valore di progetto A _{sol,est} /A _{sup utile}	0,033	<u>.</u>
Valore limite (Tab. 11, appendice A) (A _{sol,est} /A _{sup utile}) _{limite}	0,040	-
Verifica (positiva / negativa)	Positiva	_

Spogliatoi casa

Superficie utile A _{sup utile}	77,15	m^2
Valore di progetto A _{sol,est} /A _{sup utile}	0,034	
Valore limite (Tab. 11, appendice A) (A _{sol,est} /A _{sup utile}) _{limite}	0,040	
Verifica (positiva / negativa)	Positiva	

Indice di prestazione termica utile per la climatizzazione invernale dell'edificio

Valore di progetto EP _{H,nd}	218,73	kWh/m²
Valore limite EP _{H,nd,limite}	256,15	kWh/m²
Verifica (positiva / negativa)	Positiva	

Indice di prestazione termica utile per la climatizzazione estiva dell'edificio

Valore di progetto EP _{C,nd}	1,91	kWh/m²
Valore limite EP _{C,nd,limite}	1,50	kWh/m²
Verifica (positiva / negativa)	Negativa	

Indice della prestazione energetica globale dell'edificio (Energia primaria)

Prestazione energetica per riscaldamento EP _H	337,28	kWh/m²
Prestazione energetica per acqua sanitaria EP _W	199,93	kWh/m²
Prestazione energetica per raffrescamento EP _C	0,00	kWh/m²
Prestazione energetica per ventilazione EP _V	0,00	kWh/m²
Prestazione energetica per illuminazione EP _L	43,76	kWh/m²
Prestazione energetica per servizi EP _T	0,00	kWh/m²
Valore di progetto EP _{gl,tot}	580,97	kWh/m²
Valore limite EP _{gl,tot,limite}	734,26	kWh/m²
Verifica (positiva / negativa)	Positiva	
	<u> </u>	

Indice della prestazione energetica globale dell'edificio (Energia primaria non rinnovabile)

Valore di progetto EP_{gl,nr} 214,03 kWh/m²

b.1) Efficienze medie stagionali degli impianti

Descrizione	Servizi	η ₉ [%]	η _{g,amm} [%]	Verifica
Spogliatoi ospiti	Riscaldamento	63,9	57,5	Positiva
Spogliatoi casa	Riscaldamento	65,9	57,9	Positiva
Spogliatoi ospiti	Acqua calda sanitaria	67,0	55,1	Positiva
Spogliatoi casa	Acqua calda sanitaria	67,6	55,5	Positiva

c) Impianti fonti rinnovabili per la produzione di acqua calda sanitaria

(verifica secondo D.Lgs. 3 marzo 2011, n.28 - Allegato 3)

Percentuale di copertura del fabbisogno annuo	75,4	%
Percentuale minima di copertura prevista	55,0	%
Verifica (positiva / negativa)	Positiva	

d) Impianti fotovoltaici

Percentuale di copertura del fabbisogno annuo	35,9	%
Fabbisogno di energia elettrica da rete	8737	$kWh_{\text{e}} \\$
Energia elettrica da produzione locale	7254	$kWh_{\rm e} \\$

e)

A GAVUZZI, 4 - 10048 VINOVO (10)		
Potenza elettrica installata	14,40	kW
Potenza elettrica richiesta	4,41	kW
Verifica (positiva / negativa)	Positiva	
(verifica secondo D.Lgs. 3 marzo 2011, n.28 - Allegato 3)		
Consuntivo energia		
Energia consegnata o fornita (E _{del})	15682	kWh
Energia rinnovabile (E _{gl,ren})	366,94	kWh/m²
Energia esportata (E _{exp})	4799	kWh
Fabbisogno annuo globale di energia primaria (Egl,tot)	580,97	kWh/m ²
Energia rinnovabile in situ (elettrica)	14926	kWh _e
Energia rinnovabile in situ (termica)	0	kWh
Copertura da fonti rinnovabili		
Percentuale da fonte rinnovabile	64,2	%
Percentuale minima di copertura prevista	<i>55,0</i>	%
Verifica (positiva / negativa)	Positiva	

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

(verifica secondo D.Lgs. 3 marzo 2011, n.28 - Allegato 3, p. 1)

L'impianto di riscaldamento a pompa di calore abbinato al fotovoltaico rappresentano il massimo livello di fonti rinnovabili applicabile al caso in esame. Non è previsto l'impiego di combustibili fossili e quindi non sono presenti emissioni di CO2.

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroganel caso specifico.

La verifica del blocco spogliatoi Arbitri è stata omessa in quanto di superficie e inferiore ai 50 mq, come previsto all'art, 3 comma 3 del D.Lgs. 192/2005.

8. DOCUMENTAZIONE ALLEGATA

[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. N. 1 Rif.: Allegati al progetto esecutivo architettonico.
[]	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. N. Rif.:
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N. Rif.:
[X]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N. 1 Rif.: Progetto esecutivo impianti
[]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. N. Rif.:
[]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria. N. Rif.:
[]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N. Rif.:
[]	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. N. Rif.:
[]	Altri allegati.
I cal	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente
I cal	Altri allegati. N Rif.:
I cal di co	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti:
I cal di co [<i>X</i>]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
I cal di co [<i>X</i>] [<i>X</i>]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1.
I cal di co [<i>X</i>] [<i>X</i>]	Altri allegati. N. Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1.
I cal di co [X] [X] [X]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS
I cal di cc [X] [X] [X] [X] [X]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1.
I cal di co [X] [X] [X] [X] [X]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente.
I cal di co [X] [X] [X] [X] [X] [X] [X]	Altri allegati. N
I cal di co [X] [X] [X] [X] [X] [X] [X] [X]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente. Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5. Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4. Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2
I cal di co [X] [X] [X] [X] [X] [X] [X] [X] [X]	Altri allegati. N Rif.: coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti: Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali. Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1. Calcolo energia utile estiva del fabbricato Q _{c,nd} secondo UNI/TS 11300-1. Calcolo dei coefficienti di dispersione termica H _T - H _U - H _G - H _A - H _V . Calcolo mensile delle perdite (Q _{h,ht}), degli apporti solari (Q _{sol}) e degli apporti interni (Q _{int}) secondo UNI/TS 11300-1. Calcolo degli scambi termici ordinati per componente. Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5. Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4. Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.

9. DICHIARAZIONE DI RISPONDENZA

Il sottoscritto Ing. GIAN PAOLO BOTTAN
TITOLO NOME COGNOME

iscritto a Torino 5113 L

ALBO - ORDINE O COLLEGIO DI APPARTENENZA PROV. N. ISCRIZIONE

essendo a conoscenza delle sanzioni previste all'articolo 15, commi 1 e 2, del decreto legislativo di attuazione della direttiva 2002/91/CE

DICHIARA

sotto la propria responsabilità che:

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute dal decreto legislativo 192/2005 nonché dal decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005;
- b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi e le decorrenze di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28;
- c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data, 14/10/2020

BOTTAN
Gian Paolo
FIRMA

FIRMA

Allegato 1- Pianta Piano Terreno

Relazione tecnica di calcolo prestazione energetica del sistema edificio-impianto

EDIFICIO Spogliatoi Stadio Baseball Valter Aluffi

INDIRIZZO Via Torino, sn - 10036 Settimo T.se

COMMITTENTE Comune di Settimo T.se

INDIRIZZO Piazza della Libertà 4 - 10036 Settimo T.se (TO)

COMUNE Settimo Torinese

Rif. Settimo_Spogliatoi_2020-10-14.E0001

Software di calcolo EDILCLIMA – EC700 versione 10.20.30

BOTTAN ING. GIAN PAOLO VIA GAVUZZI, 4 - 10048 VINOVO (TO)

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.6 (3) Edifici adibiti ad attività sportive: servizi di

supporto alle attività sportive.

Edificio pubblico o ad uso pubblico Si
Edificio situato in un centro storico No

Tipologia di calcolo Calcolo regolamentare (valutazione A1/A2)

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Appendice A UNI EN ISO 6946

Serre / locali non climatizzati

Calcolo analitico

Capacità termica

Calcolo semplificato

Ombreggiamenti

Calcolo automatico

Radiazione solare Calcolo con esposizioni predefinite

Opzioni di calcolo

Regime normativo *UNI/TS 11300-4 e 5:2016*

Rendimento globale medio stagionale FAQ ministeriali (agosto 2016)

Verifica di condensa interstiziale DM 26.06.15 (interpretazione più restrittiva)

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località Settimo Torinese

Provincia **Torino**

Altitudine s.l.m. 207 m

Latitudine nord 45° 8′ Longitudine est 7° 46′ Gradi giorno DPR 412/93 2664

Zona climatica E

Località di riferimento

per dati invernali **Torino**per dati estivi **Torino**

Stazioni di rilevazione

per la temperatura

per l'irradiazione

per il vento

Bauducchi

Bauducchi

Bauducchi

Caratteristiche del vento

Regione di vento:

Direzione prevalente Nord-Est

Distanza dal mare > 40 km
Velocità media del vento 1,4 m/s
Velocità massima del vento 2,8 m/s

Dati invernali

Temperatura esterna di progetto -7,8 °C

Stagione di riscaldamento convenzionale dal 15 ottobre al 15 aprile

Dati estivi

Temperatura esterna bulbo asciutto 31,0 °C
Temperatura esterna bulbo umido 22,7 °C
Umidità relativa 50,0 %
Escursione termica giornaliera 11 °C

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	1.4	3.3	8.5	12.1	18.2	22.3	23.8	22.8	19.3	12.5	7.0	2.8

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,7	2,7	3,6	5,1	7,8	9,7	9,6	6,9	4,5	3,0	1,9	1,4
Nord-Est	MJ/m²	1,8	3,3	5,3	7,9	10,5	12,5	13,0	10,3	6,9	4,0	2,1	1,5
Est	MJ/m²	3,7	5,9	8,5	11,1	12,9	14,7	15,7	13,7	10,4	6,7	3,6	3,2
Sud-Est	MJ/m ²	6,4	8,5	10,7	11,7	12,0	12,8	13,9	13,6	11,9	9,1	5,6	5,9
Sud	MJ/m ²	8,1	10,1	11,2	10,5	9,9	10,2	11,0	11,5	11,7	10,3	6,9	7,6
Sud-Ovest	MJ/m ²	6,4	8,5	10,7	11,7	12,0	12,8	13,9	13,6	11,9	9,1	5,6	5,9
Ovest	MJ/m ²	3,7	5,9	8,5	11,1	12,9	14,7	15,7	13,7	10,4	6,7	3,6	3,2
Nord-Ovest	MJ/m ²	1,8	3,3	5,3	7,9	10,5	12,5	13,0	10,3	6,9	4,0	2,1	1,5
Orizz. Diffusa	MJ/m²	2,4	3,8	4,9	6,1	8,3	9,1	8,8	7,6	6,0	4,3	2,8	2,0
Orizz. Diretta	MJ/m²	2,2	3,9	6,8	9,9	11,4	13,7	15,2	12,6	8,6	4,7	2,0	1,9

Irradianza sul piano orizzontale nel mese di massima insolazione: 278 W/m²

ELENCO COMPONENTI

<u>Muri:</u>

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ	Ue [W/m²K]
M1	T	Muro esterno - pannello sandwich 10cm	100,0	4	0,188	-1,256	2,459	0,90	0,60	-7,8	0,192
<i>M2</i>	D	Muro interno - pannello sandwich 5cm	50,0	2	0,362	-0,353	1,266	0,90	0,60	-	0,362
<i>M3</i>	T	Porta opaca	50,0	2	0,437	-0,223	0,949	0,90	0,60	-7,8	0,438
M301	U	Muro per CT INTERNO - pannello sandwich 10 cm	100,0	4	0,186	-1,283	2,485	0,90	0,60	4,0	0,190
M302	Ε	Muro per CT ESTERNO - pannello sandwich 10 cm	100,0	4	0,188	-1,256	2,459	0,90	0,60	-7,8	0,192
M303	Ε	Muro per ESTERNO SOTTOTETTO - pannello sandwich 10 cm	100,0	4	0,188	-1,256	2,459	0,90	0,60	-7,8	0,192

Pavimenti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	[°C]	U e [W/m²K]
P1	G	Pavimento	810,0	1057	0,006	-18,802	64,361	0,90	0,60	-7,8	0,196
P201	R	Pavimento CT	810,0	1057	0,006	-18,802	64,361	0,90	0,60	-7,8	0,199
P202	U	Pavimento sottotetto da spogliatoi a st	100,0	4	0,183	-1,318	2,482	0,90	0,60	18,0	0,187
P203	E	Pavimento sottotetto sopra CT	100,0	4	0,187	-1,274	2,438	0,90	0,60	-7,8	0,191

Soffitti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	[.c] 6	U e [W/m²K]
<i>S</i> 1	U	Soffitto climatizzati	100,0	4	0,188	-1,256	2,487	0,90	0,60	5,0	0,192
<i>S2</i>	E	Copertura	40,0	1	0,544	-0,144	0,768	0,90	0,60	-7,8	0,544
<i>S3</i>	E	Soffitto non climatizzato spo2	100,0	4	0,189	-1,243	2,474	0,90	0,60	-7,8	0,193
<i>S4</i>	U	Pavimento sottotetto spogliatoio1	100,0	4	0,188	-1,256	2,487	0,90	0,60	-2,3	0,192
<i>S5</i>	U	Pavimento sottotetto spogliatoi 2	100,0	4	0,188	-1,256	2,487	0,90	0,60	-2,3	0,192
<i>S6</i>	U	Pavimento sottotetto spogliatoi arbitri	100,0	4	0,188	-1,256	2,487	0,90	0,60	-1,6	0,192

Legenda simboli

Sp Spessore struttura

Ms Massa superficiale della struttura senza intonaci Y_{IE} Trasmittanza termica periodica della struttura

BOTTAN ING. GIAN PAOLO VIA GAVUZZI, 4 - 10048 VINOVO (TO)

Sfasamento Sfasamento dell'onda termica

C_T Capacità termica areica

ε Emissività

a Fattore di assorbimento

θ Temperatura esterna o temperatura locale adiacente

Ue Trasmittanza di energia della struttura

Ponti termici:

Cod	Descrizione	Assenza di rischio formazione muffe	Ψ [W/mK]
<i>Z</i> 1	GF - Parete - Solaio controterra	X	-0,031
<i>Z2</i>	R - Parete - Copertura	X	-0,005

Legenda simboli

Ψ Trasmittanza lineica di calcolo

Componenti finestrati:

Cod	Tipo	Descrizione	vetro	ε	ggl,n	fc inv	fc est	H [cm]	L [cm]	Ug [W/m²K]	Uw [W/m²K]	6 [∘c]	Agf [m²]	Lgf [m]
W1	Т	Porta finestra 90X 210	Doppio	0,837	0,400	1,00	1,00	210,0	90,0	1,100	1,400	-7,8	0,666	3,280
W2	T	Finestra singola 100X85	Doppio	0,837	0,400	1,00	1,00	85,0	100,0	1,100	1,400	-7,8	0,675	3,300
W3	Т	Finestra doppia 205X80	Doppio	0,837	0,400	1,00	1,00	80,0	205,0	1,100	1,400	-7,8	1,330	6,600

Legenda simboli

ε Emissività

ggl,n Fattore di trasmittanza solare

fc inv Fattore tendaggi (energia invernale) fc est Fattore tendaggi (energia estiva)

H Altezza L Larghezza

Ug Trasmittanza vetro

Uw Trasmittanza serramento

 θ Temperatura esterna o temperatura locale adiacente

Agf Area del vetro

Lgf Perimetro del vetro

<u>Descrizione della struttura:</u> Muro esterno - pannello sandwich 10cm

Trasmittanza termica **0,192** W/m²K

Spessore 100 mm

Temperatura esterna (calcolo potenza invernale) -7,8 °C

Permeanza **14,286** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 4 kg/m²

Massa superficiale

Massa superficiale 4 kg/m² (senza intonaci)

Trasmittanza periodica 0,188 W/m²K

Fattore attenuazione 0,979 Sfasamento onda termica -1,3 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
1	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Poliuretano fra lamiere sigillate per PARETI 100mm - ALFA2 ISOLPACK	100,00	0,020	5,000	39	1,30	140
	Resistenza superficiale esterna	-	-	0,071	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: M1

<u>Descrizione della struttura:</u> *Muro interno - pannello sandwich 5cm* <u>Codice:</u> *M2*

Trasmittanza termica 0,362 W/m²K

Spessore 50 mm

Permeanza **28,571** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 2 kg/m²

Massa superficiale (senza intonaci) 2 kg/m²

Trasmittanza periodica **0,362** W/m²K

Fattore attenuazione 0,998 Sfasamento onda termica -0,4 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	-	0,130	1	1	-
1	Poliuretano fra lamiere sigillate per PARETI 50mm- ALFA2 ISOLPACK	50,00	0,020	2,500	39	1,30	140
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: Porta opaca

Trasmittanza termica 0,438 W/m²K

Spessore 50 mm

Temperatura esterna (calcolo potenza invernale) -7,8 °C

Permeanza **28,571** 10⁻¹²kg/sm²Pa

Massa superficiale

(agn interest)

2 kg/m²

(con intonaci)

Massa superficiale (senza intonaci) 2 kg/m²

Trasmittanza periodica **0,437** W/m²K

Fattore attenuazione 0,999 Sfasamento onda termica -0,2 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Poliuretano espanso in fabbrica fra lamiere sigillate	50,00	0,024	2,083	30	1,30	140
-	Resistenza superficiale esterna	-	-	0,071	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

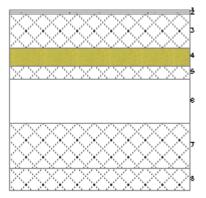
Codice: M3

Descrizione della struttura: Pavimento

Trasmittanza termica 0,304 W/m²K
Trasmittanza controterra 0,196 W/m²K

Spessore **810** mm

Temperatura esterna (calcolo potenza invernale) -7,8 °C


Permeanza **0,002** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 1081 kg/m²

Massa superficiale (senza intonaci) 1057 kg/m²

Trasmittanza periodica **0,006** W/m²K

Fattore attenuazione 0,032 Sfasamento onda termica -18,8 h

Codice: P1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	8,00	1,300	-	2300	0,84	9999999
2	Malta di cemento	12,00	1,400	-	2000	1,00	22
3	Massetto ripartitore in calcestruzzo con rete	150,00	1,490	-	2200	0,88	70
4	Polistirene espanso sinterizzato (EPS 250)	80,00	0,033	-	35	1,45	60
5	C.I.s. in genere	60,00	0,420	-	1100	1,00	96
6	Intercapedine debolmente ventilata Av=600 mm²/m	200,00	1	-	-	-	-
7	C.I.s. armato (1% acciaio)	200,00	2,300	-	2300	1,00	-
8	Sottofondo di cemento magro	100,00	0,900	-	1800	0,88	-
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento appoggiato su terreno:

Pavimento Codice: P1

Area del pavimento		260,00	m²
Perimetro disperdente del pavimento		100,00	m
Spessore pareti perimetrali esterne		100	mm
Conduttività termica del terreno		2,00	W/mK
Posizione isolante		1	
Posizione isolante Larghezza dell'isolamento di bordo	D	1 2,00	m
	D d _n	•	

<u>Descrizione della struttura:</u> Soffitto climatizzati

0,192 W/m²K Trasmittanza termica

100 mm Spessore

Temperatura esterna 5,0 (calcolo potenza invernale)

10⁻¹²kg/sm²Pa 14,286 Permeanza

Massa superficiale

kg/m² (con intonaci)

Massa superficiale 4 kg/m² (senza intonaci)

0,188 W/m²K Trasmittanza periodica

Fattore attenuazione 0,979 Sfasamento onda termica **-1,3** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	1	0,100	-	-	-
1	Poliuretano fra lamiere sigillate per COPERTURA 100mm - DELTA5 ISOLPACK	100,00	0,020	5,000	39	1,30	140
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 51

Descrizione della struttura: Copertura

Trasmittanza termica **0,544** W/m²K

Spessore 40 mm

Temperatura esterna -7,8 °C

(calcolo potenza invernale)

Permeanza **35,714** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 1 kg/m²

Massa superficiale (senza intonaci) 1 kg/m²

Trasmittanza periodica **0,544** W/m²K

Fattore attenuazione 1,000 Sfasamento onda termica -0,1 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071	1	-	-
1	Poliuretano espanso in fabbrica fra lamiere sigillate	40,00	0,024	1,667	30	1,30	140
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 52

<u>Descrizione della struttura:</u> Soffitto non climatizzato spo2

Trasmittanza termica 0,193 W/m²K

Spessore 100 mm

Temperatura esterna (calcolo potenza invernale) -7,8 °C

Permeanza **14,286** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 4 kg/m²

Massa superficiale (senza intonaci) 4 kg/m²

Trasmittanza periodica **0,189** W/m²K

Fattore attenuazione 0,979 Sfasamento onda termica -1,2 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071		-	
1	Poliuretano fra lamiere sigillate per COPERTURA 100mm - DELTA5 ISOLPACK	100,00	0,020	5,000	39	1,30	140
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 53

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Porta finestra 90X 210

Codice:	W 1

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Senza classificazione Trasmittanza termica U_w 1,400 W/m 2 K Trasmittanza solo vetro U_a 1,100 W/m 2 K

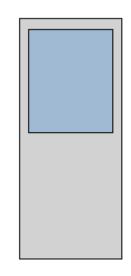
Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad 0,837 \quad - \\ \text{Fattore tendaggi (invernale)} \qquad f_{\text{c inv}} \qquad 1,00 \quad - \\ \text{Fattore tendaggi (estivo)} \qquad f_{\text{c est}} \qquad 1,00 \quad - \\ \text{Fattore di trasmittanza solare} \qquad g_{\text{gl,n}} \qquad 0,400 \quad - \\ \text{Fattore trasmissione solare totale} \qquad g_{\text{gl+sh}} \qquad 0,393 \quad - \\ \end{array}$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza 90,0 cm Altezza 210,0 cm

Caratteristiche del telaio

K distanziale K_d **0,11** W/mK Area totale A_w 1,890 m² Area vetro **0,666** m² A_g Area telaio A_f **1,224** m² Fattore di forma F_f 0,35 -Perimetro vetro Lg **3,280** m Perimetro telaio **6,000** m

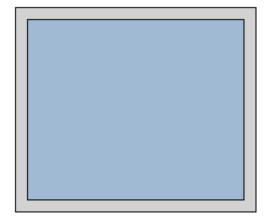
Caratteristiche del modulo

Trasmittanza termica del modulo U 1,400 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Finestra singola 100X85

Codice: W2


Caratteristiche	del serramento

Tipologia di serramento -

Classe di permeabilità Senza classificazione

Dati per il calcolo degli apporti solari

Emissività	ε	0,837	-	
Fattore tendaggi (invernale)	$f_{\text{c inv}}$	1,00	-	
Fattore tendaggi (estivo)	$f_{c\ est}$	1,00	-	
Fattore di trasmittanza solare	$g_{gl,n}$	0,400	-	
Fattore trasmissione solare totale	q_{al+sh}	0,393	_	

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure $0,00 \text{ m}^2\text{K/W}$ f shut 0,6 -

Dimensioni del serramento

Larghezza 100,0 cm Altezza 85,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,11	W/mK
Area totale	A_{w}	0,850	m^2
Area vetro	A_g	0,675	m^2
Area telaio	A_f	0,175	m^2
Fattore di forma	F_f	0,79	-
Perimetro vetro	L_g	3,300	m
Perimetro telaio	L_f	3,700	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,400 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Finestra doppia 205X80

Codice: W3

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 1,400 W/m²K Trasmittanza solo vetro U_q 1,100 W/m²K

Dati per il calcolo degli apporti solari

Emissività	3	0,837	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	1,00	-
Fattore tendaggi (estivo)	$f_{c\ est}$	1,00	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,400	-
Fattore trasmissione solare totale	g_{gl+sh}	0,393	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure	0,00	m ² K/W
f shut	0,6	-

Dimensioni del serramento

Larghezza	205,0	cm
Altezza	80,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,11	W/mK
Area totale	A_{w}	1,640	m^2
Area vetro	A_{g}	1,330	m^2
Area telaio	A_f	0,310	m^2
Fattore di forma	F_f	0,81	-
Perimetro vetro	L_g	6,600	m
Perimetro telaio	L_f	5,700	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,400 W/m²K

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Settimo Torinese

Dati climatici della località:

Località

Provincia	Torino	
Altitudine s.l.m.	20	7 m
Gradi giorno	266	4
Zona climatica		E
Temperatura esterna di progetto	-7.	8°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	154,15	m^2
Superficie esterna lorda	<i>651,79</i>	m^2
Volume netto	416,20	m^3
Volume lordo	<i>592,80</i>	m^3
Rapporto S/V	1,10	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Coefficienti di esposizione solare:

Nord: **1,20**

Nord-Ovest: 1,15 Nord-Est: 1,20

Ovest: 1,10 Est: 1,15

Sud-Ovest: 1,05 Sud-Est: 1,10

Sud: **1,00**

DISPERSIONI DEI COMPONENTI

Zona 1 - Spogliatoi ospiti

Dettaglio delle dispersioni per trasmissione dei componenti

Dispersioni strutture opache:

Cod	Tipo	Descrizione elemento	U [W/m²K]	θe [°C]	S _{Tot} [m²]	Ф _{tr} [W]	% Φ _{Tot} [%]
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	128,51	885	38,5
<i>M3</i>	T	Porta opaca	0,444	-7,8	1,89	29	1,3
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	18,39	60	2,6
P1	G	Pavimento	0,196	-7,8	82,10	512	22,3
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	82,10	253	11,0

Totale: **1740 75,6**

<u>Dispersioni strutture trasparenti:</u>

Cod	Tipo	Descrizione elemento	U [W/m²K]	θe [°C]	S _{Tot} [m²]	Φ _{tr} [W]	% Φ _{Tot} [%]
W1	T	Porta finestra 90X 210	1,400	-7,8	3,78	194	8,4
W2	T	Finestra singola 100X85	1,400	-7,8	2,55	125	5,4
W3	T	Finestra doppia 205X80	1,400	-7,8	6,56	336	14,6

Totale: **654 28,4**

Dispersioni dei ponti termici:

Cod	Tipo	Descrizione elemento	Ψ [W/mK]	L _{Tot} [m]	Φ _{tr} [W]	% Φ _{Tot} [%]
<i>Z</i> 1	1	GF - Parete - Solaio controterra	-0,031	79,38	-83	-3,6
Z2	_	R - Parete - Copertura	-0,005	79,38	-10	-0,4

Totale: -93 -4,0

Zona 2 - Spogliatoi casa

Dettaglio delle dispersioni per trasmissione dei componenti

<u>Dispersioni strutture opache:</u>

Cod	Tipo	Descrizione elemento	U [W/m²K]	θe [°C]	S _{Tot} [m²]	Ф _{tr} [W]	% Φ _{Tot} [%]
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	128,47	894	39,4
<i>M3</i>	T	Porta opaca	0,444	-7,8	1,89	32	1,4
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	18,42	61	2,7
P1	G	Pavimento	0,196	-7,8	82,12	513	22,6
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	82,12	<i>253</i>	11,1

Totale: 1752 77,1

<u>Dispersioni strutture trasparenti:</u>

Cod	Cod Tipo Descrizione elemento	U	θе	S _{Tot}	Φtr	% Ф тоt	
Cou	Про	Descrizione elemento	[W/m ² K]	[°C]	[m²]	[W]	[%]

BOTTAN ING. GIAN PAOLO VIA GAVUZZI, 4 - 10048 VINOVO (TO)

W1	T	Porta finestra 90X 210	1,400	-7,8	3,78	177	7,8
W2	T	Finestra singola 100X85	1,400	-7,8	2,55	129	5,7
W3	T	Finestra doppia 205X80	1,400	-7,8	6,56	307	13,5

Totale: **612 27,0**

Dispersioni dei ponti termici:

Cod	Tipo	Descrizione elemento	Ψ [W/mK]	L _{Tot} [m]	Ф _{tr} [W]	% Φ _{Tot} [%]
Z 1	-	GF - Parete - Solaio controterra	-0,031	79,37	-83	-3,7
<i>Z2</i>	-	R - Parete - Copertura	-0,005	79,37	-10	-0,4

Totale: -93 -4,1

Legenda simboli

 $\begin{array}{lll} U & Trasmittanza termica dell'elemento disperdente \\ \Psi & Trasmittanza termica lineica del ponte termico \\ \theta e & Temperatura di esposizione dell'elemento \\ S_{Tot} & Superficie totale su tutto l'edificio dell'elemento disperdente \\ L_{Tot} & Lunghezza totale su tutto l'edificio del ponte termico \\ \end{array}$

 Φ_{tr} Potenza dispersa per trasmissione

 $\%\Phi_{Tot} \qquad \text{Rapporto percentuale tra il } \Phi_{tr} \text{ dell'elemento e il } \Phi_{tr} \text{ totale dell'edificio}$

POTENZE DI PROGETTO DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Zona 1 - Spogliatoi ospiti

Dettaglio del fabbisogno di potenza dei locali

Zona: Locale: Descrizione: Spogliatoio ospiti Superficie in pianta netta **43,11** m² Volume netto **116,40** m³ Altezza netta **2,70** m Ricambio d'aria **8,00** 1/h Temperatura interna **24,0** °C Fattore di ripresa **27** W/m² Ventilazione Naturale η recuperatore

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Φ tr [W]
M2	D	Muro interno - pannello sandwich 5cm	0,362	1	1	0,00	20,25	1
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SE	1,10	9,64	-10
Z 2	-	R - Parete - Copertura	-0,005	-7,8	SE	1,10	9,64	-2
<i>M3</i>	T	Porta opaca	0,444	-7,8	SE	1,10	1,89	29
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SE	1,10	32,92	223
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	-	0,00	5,94	-
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	-	0,00	8,17	-
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	-	0,00	14,26	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NO	1,15	7,39	-8
Z 2	-	R - Parete - Copertura	-0,005	-7,8	NO	1,15	7,39	-1
W3	T	Finestra doppia 205X80	1,400	-7,8	NO	1,15	1,64	84
W3	T	Finestra doppia 205X80	1,400	-7,8	NO	1,15	1,64	84
W1	T	Porta finestra 90X 210	1,400	-7,8	NO	1,15	1,89	97
W1	T	Porta finestra 90X 210	1,400	-7,8	NO	1,15	1,89	97
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NO	1,15	19,63	139
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	17,03	-17
P1	G	Pavimento	0,196	-7,8	OR	1,00	45,14	282
<i>Z2</i>	_	R - Parete - Copertura	-0,005	5,0	OR	1,00	17,03	-1
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	45,14	139

Zona: 1 Locale: 10 Descrizione: Servizi lato nord

Superficie in pianta netta 17,07 Volume netto 46,09 m^3 Altezza netta 2,70 Ricambio d'aria 8,00 1/h m Temperatura interna 24,0 °C Fattore di ripresa **27** W/m² Ventilazione Naturale η recuperatore

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Φ _{tr} [W]
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NE	1,20	2,01	-2
<i>Z2</i>	_	R - Parete - Copertura	-0,005	-7,8	NE	1,20	2,01	0
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NE	1,20	7,27	54
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	-	0,00	5,76	19
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	i	0,00	6,86	23
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	-	0,00	5,77	19
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NE	1,20	1,71	-2
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NE	1,20	1,71	0
W2	T	Finestra singola 100X85	1,400	-7,8	NE	1,20	0,85	45
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NE	1,20	5,31	39
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SE	1,10	3,90	-4
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SE	1,10	3,90	-1
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SE	1,10	14,07	95
M2	D	Muro interno - pannello sandwich 5cm	0,362	1	i	0,00	20,25	-
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NO	1,15	3,90	-4
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NO	1,15	3,90	-1
W3	T	Finestra doppia 205X80	1,400	-7,8	NO	1,15	1,64	84
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NO	1,15	12,43	88
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	11,52	-11
P1	G	Pavimento	0,196	-7,8	OR	1,00	18,85	118
<i>Z2</i>	_	R - Parete - Copertura	-0,005	5,0	OR	1,00	11,52	-1
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	18,85	58

Dispersioni per trasmissione: $\Phi_{tr} = 614$ Dispersioni per ventilazione: $\Phi_{ve} = 3908$ Dispersioni per intermittenza: $\Phi_{rh} = 461$ Dispersioni totali: $\Phi_{hl} = 4983$ Dispersioni totali con coefficiente di sicurezza: Φ_{hl} sic= 4983

Zona: 1 Locale: 11 Descrizione: Servizi lato sud Superficie in pianta netta **16,82** m² Volume netto 45,41 m^3 Altezza netta 2,70 Ricambio d'aria 8,00 1/h m Temperatura interna **24,0** °C Fattore di ripresa W/m^2 27

Ventilazione Naturale η recuperatore - -

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Ф _{tr} [W]
M2	D	Muro interno - pannello sandwich 5cm	0,362	1	-	0,00	14,26	-

Diene	rcioni	per trasmissione:					$\Phi_{tr} =$	<i>554</i>
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	18,11	56
<i>Z2</i>	-	R - Parete - Copertura	-0,005	5,0	OR	1,00	11,14	- 1
P1	G	Pavimento	0,196	-7,8	OR	1,00	18,11	113
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	11,14	-17
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NO	1,15	12,43	88
W3	T	Finestra doppia 205X80	1,400	-7,8	NO	1,15	1,64	84
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NO	1,15	3,90	1
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NO	1,15	3,90	-4
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SO	1,05	18,50	11
<i>W2</i>	T	Finestra singola 100X85	1,400	-7,8	SO	1,05	0,85	4
W2	T	Finestra singola 100X85	1,400	-7,8	SO	1,05	0,85	40
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SO	1,05	5,59	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SO	1,05	5,59	- (
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SE	1,10	5,95	40
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SE	1,10	1,65	
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SE	1,10	1,65	-2
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	-	0,00	5,94	
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	-	0,00	8,17	

Dispersioni per trasmissione:	$\Phi_{tr} =$	<i>554</i>
Dispersioni per ventilazione:	Φ_{ve} =	3851
Dispersioni per intermittenza:	$\Phi_{rh} =$	454
Dispersioni totali:	Φ_{hI} =	4859
Dispersioni totali con coefficiente di sicurezza:	$\Phi_{hl\;sic} =$	4859

Zona 2 - Spogliatoi casa

Dettaglio del fabbisogno di potenza dei locali

Zona: 2 Local	e: 1		Descrizione:	Servizi lato ovest		
Superficie in pianta netta	20,43	m^2	Volume netto	<i>55,16</i>	m^3	
Altezza netta	2,70	m	Ricambio d'aria	8,00	1/h	
Temperatura interna	24,0	°C	Fattore di ripresa	27	W/m²	
Ventilazione	Naturale		η recuperatore	-	-	

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Φ _{tr} [W]
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NE	1,20	3,90	-5
Z 2	-	R - Parete - Copertura	-0,005	-7,8	NE	1,20	3,90	-1
<i>M3</i>	T	Porta opaca	0,444	-7,8	NE	1,20	1,89	32
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NE	1,20	12,18	90
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	i	0,00	20,21	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SO	1,05	3,89	-4
<i>Z2</i>	_	R - Parete - Copertura	-0,005	-7,8	SO	1,05	3,89	-1
W3	T	Finestra doppia 205X80	1,400	-7,8	SO	1,05	1,64	77

M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SO	1,05	12,40	80
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NO	1,15	1,96	-2
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NO	1,15	1,96	0
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NO	1,15	7,09	50
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NO	1,15	3,63	-4
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NO	1,15	3,63	-1
W2	T	Finestra singola 100X85	1,400	-7,8	NO	1,15	0,85	44
W2	T	Finestra singola 100X85	1,400	-7,8	NO	1,15	0,85	44
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NO	1,15	11,42	81
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	13,39	-13
P1	G	Pavimento	0,196	-7,8	OR	1,00	21,88	137
<i>Z2</i>	-	R - Parete - Copertura	-0,005	5,0	OR	1,00	13,39	-1
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	21,88	67

Dispersioni per trasmissione:	$\Phi_{tr} =$	669
Dispersioni per ventilazione:	Φ_{ve} =	4678
Dispersioni per intermittenza:	$\Phi_{rh} \! = \!$	552
Dispersioni totali:	$\Phi_{hl} =$	<i>5898</i>
Dispersioni totali con coefficiente di sicurezza:	$\Phi_{\rm hlsic} =$	5898

Zona: 2 Locale: 2 Descrizione: Spogliatoi casa

Superficie in pianta netta 39,71 m² Volume netto 107,22 m³ Altezza netta 2,70 m Ricambio d'aria 8,00 1/h Temperatura interna 24,0 °C Fattore di ripresa 27 W/m² Ventilazione Naturale η recuperatore -

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Φ _{tr} [W]
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	NE	1,20	7,40	-9
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NE	1,20	7,40	-1
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NE	1,20	26,72	197
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	1	0,00	20,21	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SO	1,05	7,41	-8
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SO	1,05	7,41	-1
W3	T	Finestra doppia 205X80	1,400	-7,8	SO	1,05	1,64	77
W3	T	Finestra doppia 205X80	1,400	-7,8	SO	1,05	1,64	77
W1	T	Porta finestra 90X 210	1,400	-7,8	SO	1,05	1,89	88
W1	T	Porta finestra 90X 210	1,400	-7,8	SO	1,05	1,89	88
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SO	1,05	19,68	127
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	1	0,00	20,21	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	14,81	-15
P1	G	Pavimento	0,196	-7,8	OR	1,00	41,46	259
<i>Z2</i>	-	R - Parete - Copertura	-0,005	5,0	OR	1,00	14,81	-1
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	41,46	128

Dispersioni per trasmissione: $\Phi_{tr} = 1006$

Dispersioni per ventilazione:	Φ _{ve} =	9092
Dispersioni per intermittenza:	$\Phi_{rh} =$	1072
Dispersioni totali:	$\Phi_{hl} =$	11170
Dispersioni totali con coefficiente di sicurezza:	$\Phi_{hl\;sic} =$	11170

Zona: 2 L	ocale:	3		Descrizione:	Spogliatoi est	
Superficie in pianta r	netta	17,01	m^2	Volume netto	45,93	m^3
Altezza netta		2,70	m	Ricambio d'aria	8,00	1/h
Temperatura interna		24,0	°C	Fattore di ripresa	27	W/m^2
Ventilazione		Naturale		η recuperatore	-	-

Cod	Tipo	Descrizione elemento	U [W/m²K] Ψ[W/mK]	θe [°C]	Esp	ce	Sup.[m²] Lungh.[m]	Φ _{tr} [W]
Z 1	_	GF - Parete - Solaio controterra	-0,031	-7,8	NE	1,20	3,90	-5
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	NE	1,20	3,90	-1
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	NE	1,20	14,08	104
Z 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SE	1,10	1,70	-2
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SE	1,10	1,70	0
W2	T	Finestra singola 100X85	1,400	-7,8	SE	1,10	0,85	42
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SE	1,10	5,27	36
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	-	0,00	5,77	19
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	-	0,00	6,84	22
M30 1	U	Muro per CT INTERNO - pannello sandwich 10 cm	0,190	4,0	-	0,00	5,81	19
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SE	1,10	1,99	-2
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SE	1,10	1,99	0
M1	Т	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SE	1,10	7,19	49
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	SO	1,05	3,90	-4
<i>Z2</i>	-	R - Parete - Copertura	-0,005	-7,8	SO	1,05	3,90	-1
W3	T	Finestra doppia 205X80	1,400	-7,8	SO	1,05	1,64	77
M1	T	Muro esterno - pannello sandwich 10cm	0,193	-7,8	SO	1,05	12,44	80
M2	D	Muro interno - pannello sandwich 5cm	0,362	-	1	0,00	20,21	-
<i>Z</i> 1	-	GF - Parete - Solaio controterra	-0,031	-7,8	OR	1,00	11,49	-11
P1	G	Pavimento	0,196	-7,8	OR	1,00	18,78	117
<i>Z2</i>	_	R - Parete - Copertura	-0,005	5,0	OR	1,00	11,49	-1
<i>S</i> 1	U	Soffitto climatizzati	0,192	5,0	OR	1,00	18,78	58

Dispersioni per trasmissione:	$\Phi_{tr} =$	<i>596</i>
Dispersioni per ventilazione:	Φ_{ve} =	3895
Dispersioni per intermittenza:	$\Phi_{rh} =$	459
Dispersioni totali:	$\Phi_{hl} =$	4950
Dispersioni totali con coefficiente di sicurezza:	$\Phi_{hl\;sic} =$	4950

U

Ψ	Trasmittanza	termica	lineica	del	ponte	termico

 θe Temperatura di esposizione dell'elemento

Esp Esposizione dell'elemento

ce Coefficiente di esposizione solare Sup Superficie dell'elemento disperdente

Lungh Lunghezza del ponte termico

 Φ_{tr} Potenza dispersa per trasmissione

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Zona 1 - Spogliatoi ospiti fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Φ _{tr} [W]	Φ _{ve} [W]	Φ _{rh} [W]	Ф _ы [W]	Ф _{hI sic} [W]
9	Spogliatoio ospiti	24,0	8,00	1133	9871	1164	12168	12168
10	Servizi lato nord	24,0	8,00	614	3908	461	4983	4983
11	Servizi lato sud	24,0	8,00	554	3851	454	4859	4859

Totale: 2302 17630 2079 22011 22011

Zona 2 - Spogliatoi casa fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Φ _{ve} [W]	Φ _{rh} [W]	Ф _ы [W]	Ф _{hI sic} [W]
1	Servizi lato ovest	24,0	8,00	669	4678	552	5898	5898
2	Spogliatoi casa	24,0	8,00	1006	9092	1072	11170	11170
3	Spogliatoi est	24,0	8,00	596	3895	459	4950	4950

Totale: 2271 17664 2083 22018 22018

Totale Edifico: 4573 35294 4162 44029 44029

Legenda simboli

θi Temperatura interna del locale

n Ricambio d'aria del locale

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

Φ_{hl} Potenza totale dispersa

 $\Phi_{hl \; sic}$ Potenza totale moltiplicata per il coefficiente di sicurezza

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Coefficiente di sicurezza adottato 1,00 -

Dati geometrici delle zone termiche:

Zona	Zona Descrizione		V _{netto} [m³]	S _u [m ²]	S _{lorda} [m²]	S [m²]	S/V [-]
1	Spogliatoi ospiti	296,33	207,90	77,00	82,09	325,88	1,10
2	Spogliatoi casa	296,46	208,30	77,15	82,12	325,91	1,10

Totale: 592,80 416,20 154,15 164,21 651,79 1,10

Fabbisogno di potenza delle zone termiche

Zona	Zona Descrizione		Φ _{ve} [W]	Φ _{rh} [W]	Ф _н [W]	Ф _{hI sic} [W]
1	Spogliatoi ospiti	2302	17630	2079	22011	22011
2	Spogliatoi casa	2271	17664	2083	22018	22018

Totale: 4573 35294 4162 44029 44029

Legenda simboli

 $\begin{array}{ll} V & \quad \mbox{Volume lordo} \\ V_{\mbox{\scriptsize netto}} & \quad \mbox{Volume netto} \end{array}$

 S_u Superficie in pianta netta S_{lorda} Superficie in pianta lorda

S Superficie esterna lorda (senza strutture di tipo N)

S/V Fattore di forma

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

 Φ_{hl} Potenza totale dispersa

FABBISOGNO DI ENERGIA PRIMARIA

secondo UNI/TS 11300-2 e UNI/TS 11300-4

Zona 1 : Spogliatoi ospiti

Modalità di funzionamento

Circuito Riscaldamento

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	93,0	%
Rendimento di regolazione	η _{H,rg}	99,5	%
Rendimento di distribuzione utenza	$\eta_{H,du}$	97,0	%
Rendimenti di accumulo	$\eta_{H,s}$	99,6	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{H,gen,p,nren}	129,9	%
Rendimento di generazione (risp. a en. pr. totale)	η _{H,gen,p,tot}	64,1	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	η _{H,g,p,nren}	149,0	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	η _{H,g,p,tot}	63,9	%

Dettaglio rendimenti dei singoli generatori:

Generatore	η H,gen,ut	ຐ н,gen,p,nren	η _{H,gen,p,tot}
	[%]	[%]	[%]
Pompa di calore - secondo UNI/TS 11300-4	253,3	129,9	64,1

Legenda simboli

 $\eta_{\text{H},\text{gen},\text{ut}}$ Rendimento di generazione rispetto all'energia utile

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H},\text{gen},p,\text{tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Circuito Riscaldamento

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione Radiatori su parete esterna isolata

Temperatura di mandata di progetto 85,0 °C
Potenza nominale dei corpi scaldanti 22011 W
Fabbisogni elettrici 0 W

Rendimento di emissione 95,0 %

Caratteristiche sottosistema di regolazione:

Tipo Per zona + climatica

Caratteristiche PI o PID

Rendimento di regolazione 99,5 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio singolo

Posizione impianto -

Posizione tubazioni Tubazioni incassate a pavimento con distribuzione a

collettori

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione 1,00

Rendimento di distribuzione utenza 97,0 %

Fabbisogni elettrici 100 W

Temperatura dell'acqua - Riscaldamento

Tipo di circuito Termostato modulante, valvola a 2 vie

Maggiorazione potenza corpi scaldanti 10,0 % Δ T nominale lato aria 35,0 °C Esponente n del corpo scaldante 1,30 - Δ T di progetto lato acqua 20,0 °C

Portata nominale 1041,83 kg/h

Criterio di calcolo *Temperatura di mandata variabile*

Temperatura di mandata massima 55,0 °C ΔT mandata/ritorno 20,0 °C

		EMETTITORI					
Mese	ese giorni $\theta_{e,avg}$		θe,flw [°C]	θe,ret [°C]			
ottobre	17	23,6	33,6	18,0			

novembre	30	26,2	36,2	18,0
dicembre	31	28,6	38,6	18,6
gennaio	31	29,3	39,3	19,3
febbraio	28	28,1	38,1	18,1
marzo	31	25,1	35,1	18,0
aprile	15	23,2	33,2	18,0

 $\begin{array}{ll} \theta_{e,avg} & \text{Temperatura media degli emettitori del circuito} \\ \theta_{e,flw} & \text{Temperatura di mandata degli emettitori del circuito} \\ \theta_{e,ret} & \text{Temperatura di ritorno degli emettitori del circuito} \end{array}$

Dati comuni

Caratteristiche sottosistema di accumulo:

Dispersione termica 2,390 W/K

Ambiente di installazione

Fattore di recupero delle perdite 0,70

Temperatura ambiente installazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
6,4	8,3	13,5	17,1	23,2	27,3	28,8	27,8	24,3	17,5	12,0	7,8

Temperatura dell'acqua:

		C	ISTRIBUZION	E
Mana	aio mi	∂ d,avg	∂ d,flw	θ d,ret
Mese	giorni	[°C]	[°C]	[°C]
ottobre	17	25,8	33,6	18,0
novembre	30	27,1	36,2	18,0
dicembre	31	28,6	38,6	18,6
gennaio	31	29,3	39,3	19,3
febbraio	28	28,1	38,1	18,1
marzo	31	26,5	35,1	18,0
aprile	15	25,6	33,2	18,0

Legenda simboli

 $\begin{array}{ll} \theta_{d,avg} & \text{Temperatura media della rete di distribuzione} \\ \theta_{d,flw} & \text{Temperatura di mandata della rete di distribuzione} \\ \theta_{d,ret} & \text{Temperatura di ritorno della rete di distribuzione} \end{array}$

SERVIZIO ACQUA CALDA SANITARIA

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di erogazione	$\eta_{ m W,er}$	100,0	%
Rendimento di distribuzione utenza	$\eta_{W,du}$	92,6	%
Rendimento di accumulo	η _{W,s}	88,6	%
Rendimento di generazione (risp. a en. utile)	η _{W,gen,ut}	299,8	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{W,gen,p,nren}	153,8	%
Rendimento di generazione (risp. a en. pr. non tot.)	$\eta_{W,gen,p,tot}$	67,9	%

Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{W,g,p,nren}$	266,4	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{W,g,p,tot}$	67,0	%

Dati per zona

Zona: Spogliatoi ospiti

Fabbisogno giornaliero di acqua sanitaria [I/g]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
900	900	900	900	900	900	900	900	900	900	900	900

Categoria DPR 412/93 E.6 (3)

Temperatura di erogazione **40,0** °C

Temperatura di alimentazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8

Fabbisogno giornaliero per posto **30,0** I/g posto

Numero di posti 30

Fattore di occupazione [%]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
100	100	100	100	100	100	100	100	100	100	100	100

Caratteristiche sottosistema di erogazione:

Rendimento di erogazione 100,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Sistemi installati dopo l'entrata in vigore della legge 373/76, rete corrente parzialmente in ambiente climatizzato

Caratteristiche sottosistema di accumulo singolo:

3,925 W/K Dispersione termica **60,0** °C Temperatura media dell'accumulo Ambiente di installazione Centrale termica

Fattore di recupero delle perdite 0,70

Temperatura ambiente installazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
6,4	8,3	13,5	17,1	23,2	27,3	28,8	27,8	24,3	17,5	12,0	7,8

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Riscaldamento e acqua calda sanitaria

Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-4

VIESSMANN Srl/Energycal AW PRO AT 7.1-41.1/Energycal AW PRO AT Marca/Serie/Modello

26.1

Tipo di pompa di calore **Elettrica** Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Temperatura di funzionamento (cut-off) minima -20,0 °C

massima **40,0** °C

Temperatura di funzionamento (cut-off) minima 20,0 °C

massima **65,0** °C

Temperatura della sorgente calda (acqua sanitaria) 55,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione COP

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	35	45	55		
-7	3,13	2,57	2,04		
2	3,80	3,06	2,45		
7	4,26	3,36	2,69		
12	4,60	3,66	2,90		

Potenza utile Pu [kW]

Temperatura sorgente	Temperatura sorgente calda θ _c [°C]				
fredda θ _f [°C]	35	45	55		
-7	18,80	19,30	19,80		
2	22,40	23,00	23,80		
7	24,70	25,20	26,10		
12	26,70	27,10	27,90		

Potenza assorbita Pass [kW]

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	35	45	55		
-7	6,01	7,51	9,71		
2	5,89	7,52	9,71		
7	5,80	7,50	9,70		
12	5,80	7,40	9,62		

Fattori correttivi della pompa di calore:

Potenza di progetto Pdes (a -10°C) 20,09 kW

Condizioni di parzializzazione	Α	В	С	D
Temperatura di riferimento [°C]	-7	2	7	12
Fattore di carico climatico (PLR) [%]	88	54	35	15
Potenza DC a pieno carico [kW]	17,77	22,01	24,71	27,89
COP a carico parziale	3,05	3,32	3,22	2,49
COP a pieno carico	3,05	3,71	4,12	4,60
Fattore di carico CR [-]	1,00	0,49	0,28	0,11
Fattore correttivo fCOP [-]	1,00	0,89	0,78	0,54

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti

0
W

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito Collegamento diretto

		G	ENERAZION	E	
Mese	giorni	θ gn,avg	$oldsymbol{ heta}$ gn,flw	θ gn,ret	
iviese	giorni	[°C]	[°C]	[°C]	
ottobre	17	25,8	33,6	18,0	
novembre	30	27,1	36,2	18,0	
dicembre	31	28,6	38,6	18,6	
gennaio	31	29,3	39,3	19,3	
febbraio	28	28,1	38,1	18,1	
marzo	31	26,5	35,1	18,0	
aprile	15	25,6	33,2	18,0	

Legenda simboli

 $\begin{array}{ll} \theta_{gn,avg} & \text{Temperatura media del generatore di calore} \\ \theta_{gn,flw} & \text{Temperatura di mandata del generatore di calore} \\ \theta_{gn,ret} & \text{Temperatura di ritorno del generatore di calore} \end{array}$

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento – impianto idronico

Zona 1 : Spogliatoi ospiti

Fabbisogni termici ed elettrici

					Fabbisog	ni termici			
Mese	99	Q _{H,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int} [kWh]	Q _{H,sys,out,cont} [kWh]	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]
gennaio	31	3942	3942	3819	3819	3819	3819	4273	1714
febbraio	28	3118	3118	3009	3009	3009	3009	3367	1336
marzo	31	2193	2193	2082	2082	2082	2082	2330	932
aprile	15	723	723	672	672	672	672	752	292
maggio	-	-	1	-	-	-	-	-	-
giugno	1	-	1	-	-	-	-	1	-
luglio	1	-	1	-	-	-	-	1	-
agosto	1	-	1	-	-	-	-	1	-
settembre	-	_	_	-	_	-	_	-	-
ottobre	17	903	903	845	845	845	845	945	349

TOTALI	183	17083	17083	16402	16402	16402	16402	18350	7245
dicembre	31	3632	3632	3512	3512	3512	3512	3929	1539
novembre	30	2572	2572	2462	2462	2462	2462	2754	1082

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale)
Q_{H,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

Q'H,sys,out Fabbisogno ideale netto

Q_{H,sys,out,int}
Q_{H,sys,out,cont}
Q_{H,sys,out,cont}
Q_{H,gen,out}
Fabbisogno corretto per intermittenza
Fabbisogno corretto per contabilizzazione
Fabbisogno corretto per ulteriori fattori
Fabbisogno in uscita dalla generazione
Fabbisogno in ingresso alla generazione

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	0	11	0	0
febbraio	28	0	9	0	0
marzo	31	0	6	0	0
aprile	15	0	2	0	0
maggio	1	-	-	-	-
giugno	1	1	1	1	-
luglio	1	1	1	1	-
agosto	1	1	1	1	-
settembre	1	1	1	1	-
ottobre	17	0	2	0	0
novembre	30	0	7	0	0
dicembre	31	0	10	0	0
TOTALI	183	0	48	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,em,aux} Fabbisogno elettrico ausiliari emissione

 $Q_{H,du,aux}$ Fabbisogno elettrico ausiliari distribuzione di utenza $Q_{H,dp,aux}$ Fabbisogno elettrico ausiliari distribuzione primaria

Q_{H,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η н,rg [%]	η н,а [%]	η н,s [%]	η н,dp [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot}	η _{H,g,p,nren} [%]	η _{Η,g,p,tot} [%]
gennaio	31	99,5	97,0	99,6	100,0	127,8	63,4	128,8	60,3
febbraio	28	99,5	97,0	99,6	100,0	129,2	63,9	143,1	62,7
marzo	31	99,5	97,0	99,6	100,0	128,1	63,5	187,1	68,5
aprile	15	99,5	97,0	99,6	100,0	131,9	64,7	1015,1	90,3
maggio	-	-	-	-	-	-	-	-	-
giugno	1	1	1	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	17	99,5	97,0	99,6	100,0	139,0	66,7	247,5	75,9
novembre	30	99,5	97,0	99,6	100,0	130,6	64,3	139,3	62,7
dicembre	31	99,5	97,0	99,6	100,0	130,9	64,4	131,1	61,1

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

BOTTAN ING. GIAN PAOLO VIA GAVUZZI, 4 - 10048 VINOVO (TO)

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{H,dp}$ Rendimento mensile di distribuzione primaria

 $\eta_{\text{H,gen,p,nren}}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{H,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{H,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{H,gen,ut} [%]	η H,gen,p,nren [%]	η _{H,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	4273	1714	249,2	127,8	63,4	0
febbraio	28	3367	1336	251,9	129,2	63,9	0
marzo	31	2330	932	249,9	128,1	63,5	0
aprile	15	752	292	257,3	131,9	64,7	0
maggio	-	-	-	-	-	-	-
giugno	1	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-
ottobre	17	945	349	271,0	139,0	66,7	0
novembre	30	2754	1082	254,6	130,6	64,3	0
dicembre	31	3929	1539	255,2	130,9	64,4	0

Mese	99	COP [-]
gennaio	31	2,49
febbraio	28	2,52
marzo	31	2,50
aprile	15	2,57
maggio	1	ı
giugno	-	ı
luglio	_	-
agosto	-	ı
settembre	_	-
ottobre	17	2,71
novembre	30	2,55
dicembre	31	2,55

Legenda simboli

 $\begin{array}{ll} gg & \text{Giorni compresi nel periodo di calcolo per riscaldamento} \\ Q_{H,gn,out} & \text{Energia termica fornita dal generatore per riscaldamento} \\ Q_{H,gn,in} & \text{Energia termica in ingresso al generatore per riscaldamento} \\ \eta_{H,gen,ut} & \text{Rendimento mensile del generatore rispetto all'energia utile} \end{array}$

η_{H,gen,p,nren} Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto idronico

Mese	gg	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{H,p,tot} [kWh]
gennaio	31	1714	1726	3060	6540
febbraio	28	1336	1345	2178	4969

marzo	31	932	939	1172	3202
aprile	15	292	294	71	801
maggio	1	-	1	1	-
giugno	1	-	1	1	-
luglio	1	1	1	1	-
agosto	1	1	1	1	1
settembre	-	-	-	1	-
ottobre	17	349	351	365	1189
novembre	30	1082	1089	1847	4101
dicembre	31	1539	1550	2770	5944
TOTALI	183	7245	7294	11463	26746

Gen

Giorni compresi nel periodo di calcolo per riscaldamento gg

 $Q_{H,gn,in} \\$ Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Fabbisogno elettrico totale per riscaldamento $Q_{H,aux} \\$

 $Q_{H,p,nren} \\$ Fabbisogno di energia primaria non rinnovabile per riscaldamento

Fabbisogno di energia primaria totale per riscaldamento $Q_{H,p,tot} \\$

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

215	324	544	718	912	1021	1111	936	656	419	217	182
Fabbisog	jno di ene	ergia prim	naria non	rinnovak	oile	C) _{H,p,nren}		1146	3 kWh	/anno
Fabbisog	jno di ene	ergia prin	naria tota	ıle		C	$Q_{H,p,tot}$		2674	6 kWh	/anno
	9	ale medio jia primar	9))	η	H,g,p,nren		149,	<i>o</i> %	
		ale medio jia primar				η	H,g,p,tot		63 ,	9 %	

Ago

Giu

Risultati mensili servizio acqua calda sanitaria

Zona 1 : Spogliatoi ospiti

Consumo di energia elettrica effettivo

Fabbisogni termici ed elettrici

			Fab	bisogni term	ici		Fabb	oisogni elet	trici
Mese	99	Q _{W,sys,out} [kWh]	Qw,sys,out,rec [kWh]	Qw,sys,out,cont [kWh]	Q _{W,gen,out} [kWh]	Q _{W,gen,in} [kWh]	Q _{w,ric,aux} [kWh]	Q _{W,dp,aux} [kWh]	Q _{W,gen,aux} [kWh]
gennaio	31	881	881	881	1108	462	0	0	0
febbraio	28	796	796	796	996	400	0	0	0
marzo	31	881	881	881	1087	396	0	0	0
aprile	30	852	852	852	1042	355	0	0	0
maggio	31	881	881	881	1059	311	0	0	0
giugno	30	852	852	852	1013	265	0	0	0
luglio	31	881	881	881	1042	262	0	0	0
agosto	31	881	881	881	1045	271	0	0	0
settembre	30	852	852	852	1021	292	0	0	0
ottobre	31	881	881	881	1075	364	0	0	0
novembre	30	852	852	852	1056	395	0	0	0

Dic

5879 kWh/anno

dicembre	31	881	881	881	1104	446	0	0	0
TOTALI	365	10370	10370	10370	12648	4218	0	0	0

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $Q_{W,sys,out}$ Fabbisogno ideale per acqua sanitaria

Q_{W,sys,out,rec} Fabbisogno corretto per recupero di calore dai reflui di scarico delle docce

 $\begin{array}{lll} Q_{W,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{W,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{W,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \\ Q_{W,ric,aux} & Fabbisogno \ elettrico \ ausiliari \ ricircolo \end{array}$

Q_{W,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria

Qw,gen,aux Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η w,d [%]	η w,s [%]	η w,ric [%]	η w,dp [%]	η _{W,gen,p,nren}	η _{W,gen,p,tot}	η _{w,g,p,nren} [%]	η _{W,g,p,tot} [%]
gennaio	31	92,6	85,9		-	122,8	59,6	107,4	49,0
febbraio	28	92,6	86,3	-	-	127,7	61,0	122,9	51,8
marzo	31	92,6	87,5	-	-	140,7	64,6	177,9	59,5
aprile	30	92,6	88,4	-	-	150,6	67,1	992,4	76,7
maggio	31	92,6	89,8	-	-	174,3	72,5	0,0	86,6
giugno	30	92,6	90,9	-	-	195,9	76,9	0,0	90,7
luglio	31	92,6	91,3	-	-	204,3	78,5	0,0	92,1
agosto	31	92,6	91,0	-	-	198,0	77,3	0,0	91,1
settembre	30	92,6	90,1	-	-	179,4	73,6	0,0	87,6
ottobre	31	92,6	88,5	-	-	151,6	67,3	233,2	65,0
novembre	30	92,6	87,2	-	-	137,3	63,7	127,4	53,7
dicembre	31	92,6	86,2	-	-	126,9	60,8	110,5	50,0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $\begin{array}{ll} \eta_{\text{W,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{W,s}} & \text{Rendimento mensile di accumulo} \\ \eta_{\text{W,ric}} & \text{Rendimento mensile della rete di ricircolo} \\ \eta_{\text{W,dp}} & \text{Rendimento mensile di distribuzione primaria} \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{W,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{W,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Qw _{,gn,out} [kWh]	Q _{w,gn,in} [kWh]	η _{w,gen,ut} [%]	ηw _{,gen,p,nren} [%]	η _{w,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	1108	462	239,5	122,8	59,6	0
febbraio	28	996	400	249,0	127,7	61,0	0
marzo	31	1087	396	274,3	140,7	64,6	0
aprile	30	1042	355	293,6	150,6	67,1	0
maggio	31	1059	311	339,9	174,3	72,5	0
giugno	30	1013	265	382,0	195,9	76,9	0
luglio	31	1042	262	398,5	204,3	78,5	0
agosto	31	1045	271	386,1	198,0	77,3	0
settembre	30	1021	292	349,8	179,4	73,6	0
ottobre	31	1075	364	295,5	151,6	67,3	0
novembre	30	1056	395	267,6	137,3	63,7	0
dicembre	31	1104	446	247,5	126,9	60,8	0

Mese	gg	COP [-]
gennaio	31	2,40
febbraio	28	2,49
marzo	31	2,74
aprile	30	2,94
maggio	31	3,40
giugno	30	3,82
luglio	31	3,98
agosto	31	3,86
settembre	30	3,50
ottobre	31	2,96
novembre	30	2,68
dicembre	31	2,48

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ acqua \ sanitaria \\ Q_{W,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ acqua \ sanitaria \\ Q_{W,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ acqua \ sanitaria \\ \eta_{W,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{W,\text{gen},p,\text{tot}}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto acqua calda sanitaria

		Q _{w,gn,in} [kWh]	Q _{W,aux} [kWh]	Q _{W,p,nren} [kWh]	Q _{W,p,tot} [kWh]	
gennaio	31	462	462	820	1798	
febbraio	28	400	400	647	1535	
marzo	31	396	396	495	1481	
aprile	30	355	355	86	1112	
maggio	31	311	311	0	1017	
giugno	30	265	265	0	940	
luglio	31	262	262	0	956	
agosto	31	271	271	0	967	
settembre	30	292	292	0	973	
ottobre	31	364	364	378	1356	
novembre	30	395	395	669	1586	
dicembre	31	446	446	797	1762	
TOTALI	365	4218	4218	3892	15482	

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $Q_{W,gn,in}$ Energia termica totale in ingresso al sottosistema di generazione per acqua sanitaria

Q_{W,aux} Fabbisogno elettrico totale per acqua sanitaria

Q_{W,p,nren} Fabbisogno di energia primaria non rinnovabile per acqua sanitaria

 $Q_{W,p,tot}$ Fabbisogno di energia primaria totale per acqua sanitaria

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
215	324	544	718	912	1021	1111	936	656	419	217	182

Fabbisogno di energia primaria non rinnovabile	$Q_{W,p,nren}$	3892	kWh/anno
Fabbisogno di energia primaria totale	$Q_{W,p,tot}$	15482	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{W,g,p,nren}$	266,4	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	$\eta_{W,g,p,tot}$	67,0	%
Consumo di energia elettrica effettivo		1996	kWh/anno

Zona 2 : Spogliatoi casa

Modalità di funzionamento

Circuito Riscaldamento Spogliatoi casa

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	95,0	%
Rendimento di regolazione	$\eta_{H,rg}$	99,5	%
Rendimento di distribuzione utenza	$\eta_{H,du}$	97,0	%
Rendimenti di accumulo	$\eta_{H,s}$	99,6	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{\text{H,gen,p,nren}}$	128,9	%
Rendimento di generazione (risp. a en. pr. totale)	$\eta_{H,gen,p,tot}$	63,9	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{H,g,p,nren}$	156,8	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	$\eta_{H,g,p,tot}$	65,9	%

Dettaglio rendimenti dei singoli generatori:

Generatore	ŋ H,gen,ut	Ŋ H,gen,p,nren	η _{H,gen,p,tot}
	[%]	[%]	[%]
Pompa di calore - secondo UNI/TS 11300-4	251,4	128,9	63,9

Legenda simboli

 $\eta_{\text{H},\text{gen},\text{ut}}$ Rendimento di generazione rispetto all'energia utile

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Circuito Riscaldamento Spogliatoi casa

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione Radiatori su parete esterna isolata

Temperatura di mandata di progetto 55,0 °C

Potenza nominale dei corpi scaldanti	22018	W
Fabbisogni elettrici	0	W
Rendimento di emissione	97,0	%

Caratteristiche sottosistema di regolazione:

Tipo Per zona + climatica

Caratteristiche PI o PID

Rendimento di regolazione 99,5 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio singolo

Posizione impianto -

Posizione tubazioni Tubazioni incassate a pavimento con distribuzione a

collettori

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione 1,00

Rendimento di distribuzione utenza 97,0 %

Fabbisogni elettrici 100 W

Temperatura dell'acqua - Riscaldamento

Tipo di circuito Termostato modulante, valvola a 2 vie

Maggiorazione potenza corpi scaldanti 10,0 % Δ T nominale lato aria 35,0 °C Esponente n del corpo scaldante 1,30 - Δ T di progetto lato acqua 20,0 °C

Portata nominale 1042,16 kg/h

Criterio di calcolo Temperatura di mandata variabile

Temperatura di mandata massima 55,0 °C ΔT mandata/ritorno 20,0 °C

EMETTITORI

Mese	Mese giorni		θ e,flw [°C]	θe,ret [°C]
ottobre	17	23,3	33,3	18,0
novembre	30	26,0	36,0	18,0
dicembre	31	28,2	38,2	18,2
gennaio	31	28,9	38,9	18,9
febbraio	28	27,8	37,8	18,0
marzo	31	24,7	34,7	18,0
aprile	15	22,9	32,9	18,0

 $\begin{array}{ll} \theta_{e,avg} & \text{Temperatura media degli emettitori del circuito} \\ \theta_{e,flw} & \text{Temperatura di mandata degli emettitori del circuito} \\ \theta_{e,ret} & \text{Temperatura di ritorno degli emettitori del circuito} \end{array}$

Dati comuni

Caratteristiche sottosistema di accumulo:

Dispersione termica 2,390 W/K

Ambiente di installazione

Fattore di recupero delle perdite 0,70

Temperatura ambiente installazione [°C]

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
ĺ	6,4	8,3	13,5	17,1	23,2	27,3	28,8	27,8	24,3	17,5	12,0	7,8

Temperatura dell'acqua:

			DISTRIBUZIONE				
Mese	giorni	∂ d,avg	∂ d,flw	θ d,ret			
iviese	giorni	[°C]	[°C]	[°C]			
ottobre	17	25,6	33,3	18,0			
novembre	30	27,0	36,0	18,0			
dicembre	31	28,2	38,2	18,2			
gennaio	31	28,9	38,9	18,9			
febbraio	28	27,9	37,8	18,0			
marzo	31	26,4	34,7	18,0			
aprile	15	25,5	32,9	18,0			

Legenda simboli

 $\begin{array}{ll} \theta_{d,avg} & \text{Temperatura media della rete di distribuzione} \\ \theta_{d,flw} & \text{Temperatura di mandata della rete di distribuzione} \\ \theta_{d,ret} & \text{Temperatura di ritorno della rete di distribuzione} \end{array}$

SERVIZIO ACQUA CALDA SANITARIA

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di erogazione	η _{W,er}	100,0	%
Rendimento di distribuzione utenza	$\eta_{W,du}$	92,6	%
Rendimento di accumulo	$\eta_{W,s}$	88,6	%

VIA GAVUZZI, 4 - 10048 VINOVO (TO)

Rendimento di generazione (risp. a en. utile)	η _{W,gen,ut}	299,8	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{W,gen,p,nren}	153,8	%
Rendimento di generazione (risp. a en. pr. non tot.)	η _{W,gen,p,tot}	67,9	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{W,g,p,nren}$	280,7	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{W,g,p,tot}$	67,6	%

Dati per zona

Zona: Spogliatoi casa

Fabbisogno giornaliero di acqua sanitaria [1/g]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
900	900	900	900	900	900	900	900	900	900	900	900

Categoria DPR 412/93 *E.6 (3)*

Temperatura di erogazione 40,0 °C

Temperatura di alimentazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8

Fabbisogno giornaliero per posto 30,0 I/g posto

Numero di posti 30

Fattore di occupazione [%]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
100	100	100	100	100	100	100	100	100	100	100	100

Caratteristiche sottosistema di erogazione:

Rendimento di erogazione 100,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Sistemi installati dopo l'entrata in vigore della legge 373/76, rete corrente parzialmente in ambiente climatizzato

Caratteristiche sottosistema di accumulo singolo:

Dispersione termica 3,925 W/K
Temperatura media dell'accumulo 60,0 °C
Ambiente di installazione Centrale termica

Fattore di recupero delle perdite 0,70

Temperatura ambiente installazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
6,4	8,3	13,5	17,1	23,2	27,3	28,8	27,8	24,3	17,5	12,0	7,8

SOTTOSISTEMA DI GENERAZIONE

<u>Dati generali</u>:

Servizio Riscaldamento e acqua calda sanitaria

Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello VIESSMANN Srl/Energycal AW PRO AT 7.1-41.1/Energycal AW PRO AT

26.1

Tipo di pompa di calore *Elettrica*

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Temperatura di funzionamento (cut-off) minima -20,0 °C

massima **40,0** °C

Temperatura di funzionamento (cut-off) minima 20,0 °C

massima **65,0** °C

Temperatura della sorgente calda (acqua sanitaria) 55,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione COP

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]					
fredda θ _f [°C]	35	45	55			
-7	3,13	2,57	2,04			
2	3,80	3,06	2,45			
7	4,26	3,36	2,69			
12	4,60	3,66	2,90			

Potenza utile Pu [kW]

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]					
fredda θ _f [°C]	35	45	55			
-7	18,80	19,30	19,80			
2	22,40	23,00	23,80			
7	24,70	25,20	26,10			
12	26,70	27,10	27,90			

Potenza assorbita Pass [kW]

Temperatura sorgente	Temperatura sorgente calda θ _c [°C]					
fredda θ _f [°C]	35	45	55			
-7	6,01	7,51	9,71			
2	5,89	7,52	9,71			
7	5,80	7,50	9,70			
12	5,80	7,40	9,62			

Fattori correttivi della pompa di calore:

Potenza di progetto Pdes (a -10°C) 20,09 kW

Condizioni di parzializzazione	Α	В	С	D
Temperatura di riferimento [°C]	-7	2	7	12
Fattore di carico climatico (PLR) [%]	88	54	<i>35</i>	15
Potenza DC a pieno carico [kW]	17,77	22,01	24,71	27,89
COP a carico parziale	3,05	3,32	3,22	2,49

COP a pieno carico	3,05	3,71	4,12	4,60
Fattore di carico CR [-]	1,00	0,49	0,28	0,11
Fattore correttivo fCOP [-]	1,00	0,89	0,78	0,54

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti

0 W

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito Collegamento diretto

		G	ENERAZION	E
Mese	giorni	θ gn,avg	θ gn,flw	θ gn,ret
		[°C]	[°C]	[°C]
ottobre	17	25,6	33,3	18,0
novembre	30	27,0	36,0	18,0
dicembre	31	28,2	38,2	18,2
gennaio	31	28,9	38,9	18,9
febbraio	28	27,9	37,8	18,0
marzo	31	26,4	34,7	18,0
aprile	15	25,5	32,9	18,0

Legenda simboli

 $\begin{array}{ll} \theta_{gn,avg} & \text{Temperatura media del generatore di calore} \\ \theta_{gn,flw} & \text{Temperatura di mandata del generatore di calore} \\ \theta_{gn,ret} & \text{Temperatura di ritorno del generatore di calore} \end{array}$

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento – impianto idronico

Zona 2 : Spogliatoi casa

Fabbisogni termici ed elettrici

					Fabbisog	ni termici			
Mese	99	Q _{H,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int}	Q _{H,sys,out,cont} [kWh]	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]
gennaio	31	3866	3866	3743	3743	3743	3743	4100	1653
febbraio	28	3038	3038	2930	2930	2930	2930	3209	1285
marzo	31	2105	2105	1993	1993	1993	1993	2184	883
aprile	15	696	696	645	645	645	645	707	276
maggio	-	-	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-

agosto	1	-	-	-	-	-	-	-	-
settembre	1	-	-	-	-	-	-	-	-
ottobre	17	855	855	798	798	798	798	873	325
novembre	30	2515	2515	2405	2405	2405	2405	2634	1042
dicembre	31	3559	3559	3438	3438	3438	3438	3766	1486
TOTALI	183	16633	16633	15952	15952	15952	15952	17473	6950

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{H,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

 $Q'_{H,sys,out}$ Fabbisogno ideale netto

 $\begin{array}{lll} Q_{H,sys,out,int} & Fabbisogno \ corretto \ per \ intermittenza \\ Q_{H,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{H,sys,out,corr} & Fabbisogno \ corretto \ per \ ulteriori \ fattori \\ Q_{H,gen,in} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{H,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \end{array}$

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	0	11	0	0
febbraio	28	0	8	0	0
marzo	31	0	6	0	0
aprile	15	0	2	0	0
maggio	-	-	1	-	-
giugno	-	-	1	-	1
luglio	-	-	1	-	1
agosto	-	-	1	-	1
settembre	_	-	1	-	1
ottobre	17	0	2	0	0
novembre	30	0	7	0	0
dicembre	31	0	10	0	0
TOTALI	183	0	46	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,em,aux} Fabbisogno elettrico ausiliari emissione

Q_{H,du,aux} Fabbisogno elettrico ausiliari distribuzione di utenza Q_{H,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria

 $Q_{H,gen,aux} \qquad \quad \text{Fabbisogno elettrico ausiliari generazione}$

Dettagli impianto termico

Mese	99	η н,гд [%]	η н,а [%]	η н,s [%]	η н,dp [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot}	η _{Η,g,p,nren} [%]	η _{Η,g,p,tot} [%]
gennaio	31	99,5	97,0	99,6	100,0	127,2	63,4	134,1	62,0
febbraio	28	99,5	97,0	99,6	100,0	128,1	63,6	150,5	64,7
marzo	31	99,5	97,0	99,5	100,0	126,8	63,2	203,4	71,1
aprile	15	99,5	97,0	99,6	100,0	131,4	64,6	1692,1	94,9
maggio	-	_	-	-	-	_	-	_	-
giugno	-	_	-	-	-	_	-	_	-
luglio	-	_	-	-	-	_	-	_	-
agosto	-	_	-	-	-	_	-	_	-
settembre	-	_	_	-	-	_	_	_	_
ottobre	17	99,5	97,0	99,6	100,0	137,8	66,6	290,1	80,1
novembre	30	99,5	97,0	99,6	100,0	129,7	64,1	145,8	64,6

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{\text{H,dp}}$ Rendimento mensile di distribuzione primaria

η_{H,gen,p,nren} Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{\text{H},g,p,nren} \qquad \text{Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile}$

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{H,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	4100	1653	248,0	127,2	63,4	0
febbraio	28	3209	1285	249,7	128,1	63,6	0
marzo	31	2184	883	247,2	126,8	63,2	0
aprile	15	707	276	256,2	131,4	64,6	0
maggio	-	-	-	-	-	-	-
giugno	1	1	1	1	-	-	-
luglio	1	1	1	1	-	-	-
agosto	1	-	-	-	-	-	-
settembre	1	-	-	-	-	-	-
ottobre	17	873	325	268,8	137,8	66,6	0
novembre	30	2634	1042	252,9	129,7	64,1	0
dicembre	31	3766	1486	253,5	130,0	64,2	0

Mese	99	COP [-]
gennaio	31	2,48
febbraio	28	2,50
marzo	31	2,47
aprile	15	2,56
maggio	1	1
giugno	1	1
luglio	1	1
agosto	1	ı
settembre	-	-
ottobre	17	2,69
novembre	30	2,53
dicembre	31	2,53

Legenda simboli

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{\text{H,gen,p,nren}}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile COP Coefficiente di effetto utile medio mensile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto idronico

Mese	99	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{H,p,tot} [kWh]
gennaio	31	1653	1664	2884	6233
febbraio	28	1285	1293	2019	4696
marzo	31	883	889	1035	2958
aprile	15	276	278	41	733
maggio	-	-	-	-	-
giugno	1	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	17	325	327	295	1068
novembre	30	1042	1048	1725	3891
dicembre	31	1486	1496	2612	5666
TOTALI	183	6950	6996	10610	25246

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,gn,in} Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento

 $Q_{H,p,nren}$ Fabbisogno di energia primaria non rinnovabile per riscaldamento

Q_{H,p,tot} Fabbisogno di energia primaria totale per riscaldamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	iviag	Giu	Lug	Ago	Sett	Ott	NOV	DIC
258	372	594	750	926	1023	1121	970	707	473	254	223
Fabbisog	no di ene	ergia prim	naria non	rinnovak	oile	C	H,p,nren		1061	o kWh/	'anno

Fabbisogno di energia primaria totale Rendimento globale medio stagionale

(rispetto all'energia primaria non rinnovabile)

Rendimento globale medio stagionale (rispetto all'energia primaria totale)

Consumo di energia elettrica effettivo

	KWIII aliilo
25246	kWh/anno
156,8	%
65,9	%
	25246 156,8 65,9

5441 kWh/anno

Risultati mensili servizio acqua calda sanitaria

Zona 2 : Spogliatoi casa

Fabbisogni termici ed elettrici

			Fab	bisogni term		Fabl	oisogni elet	trici	
Mese	g g	Q _{W,sys,out} [kWh]	Qw,sys,out,rec [kWh]	Qw,sys,out,cont [kWh]	Q _{W,gen,out} [kWh]	Q _{W,gen,in} [kWh]	Q _{W,ric,aux} [kWh]	Q _{W,dp,aux} [kWh]	Q _{W,gen,aux} [kWh]
gennaio	31	881	881	881	1108	462	0	0	0
febbraio	28	796	796	796	996	400	0	0	0
marzo	31	881	881	881	1087	396	0	0	0
aprile	30	852	852	852	1042	355	0	0	0
maggio	31	881	881	881	1059	311	0	0	0
giugno	30	852	852	852	1013	265	0	0	0
luglio	31	881	881	881	1042	262	0	0	0
agosto	31	881	881	881	1045	271	0	0	0

settembre	30	852	852	852	1021	292	0	0	0
ottobre	31	881	881	881	1075	364	0	0	0
novembre	30	852	852	852	1056	395	0	0	0
dicembre	31	881	881	881	1104	446	0	0	0
TOTALI	365	10370	10370	10370	12648	4218	0	0	0

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

Qw,sys,out Fabbisogno ideale per acqua sanitaria

 $Q_{W,sys,out,rec}$ Fabbisogno corretto per recupero di calore dai reflui di scarico delle docce

 $\begin{array}{ll} Q_{W,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{W,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{W,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \\ Q_{W,ric,aux} & Fabbisogno \ elettrico \ ausiliari \ ricircolo \end{array}$

Q_{W,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria

 $Q_{W,gen,aux}$ Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	ŋ w,a [%]	η w,s [%]	η _{w,ric} [%]	η w,dp [%]	η _{W,gen,p,nren}	η _{W,gen,p,tot}	η _{w,g,p,nren} [%]	η _{w,g,p,tot} [%]
gennaio	31	92,6	85,9	-	-	122,8	59,6	109,9	49,4
febbraio	28	92,6	86,3	1	-	127,7	61,0	127,5	52,4
marzo	31	92,6	87,5	1	-	140,7	64,6	191,0	60,5
aprile	30	92,6	88,4	1	-	150,6	67,1	1621,9	78,4
maggio	31	92,6	89,8	1	-	174,3	72,5	0,0	86,6
giugno	30	92,6	90,9	1	-	195,9	76,9	0,0	90,7
luglio	31	92,6	91,3	-	-	204,3	78,5	0,0	92,1
agosto	31	92,6	91,0	-	-	198,0	77,3	0,0	91,1
settembre	30	92,6	90,1	-	-	179,4	73,6	0,0	87,6
ottobre	31	92,6	88,5	-	-	151,6	67,3	268,7	66,8
novembre	30	92,6	87,2	-	-	137,3	63,7	131,3	54,2
dicembre	31	92,6	86,2	_	-	126,9	60,8	113,1	50,4

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $\begin{array}{lll} \eta_{W,d} & & \text{Rendimento mensile di distribuzione} \\ \eta_{W,s} & & \text{Rendimento mensile di accumulo} \\ \eta_{W,ric} & & \text{Rendimento mensile della rete di ricircolo} \\ \eta_{W,dp} & & \text{Rendimento mensile di distribuzione primaria} \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{W,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{W,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	gg	Q _{W,gn,out} [kWh]	Q _{w,gn,in} [kWh]	η _{w,gen,ut} [%]	η _{w,gen,p,nren} [%]	η _{w,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	1108	462	239,5	122,8	59,6	0
febbraio	28	996	400	249,0	127,7	61,0	0
marzo	31	1087	396	274,3	140,7	64,6	0
aprile	30	1042	355	293,6	150,6	67,1	0
maggio	31	1059	311	339,9	174,3	72,5	0
giugno	30	1013	265	382,0	195,9	76,9	0
luglio	31	1042	262	398,5	204,3	78,5	0
agosto	31	1045	271	386,1	198,0	77,3	0
settembre	30	1021	292	349,8	179,4	73,6	0
ottobre	31	1075	364	295,5	151,6	67,3	0

novembre	30	1056	395	267,6	137,3	63,7	0
dicembre	31	1104	446	247,5	126,9	60,8	0

Mese	99	COP [-]
gennaio	31	2,40
febbraio	28	2,49
marzo	31	2,74
aprile	30	2,94
maggio	31	3,40
giugno	30	3,82
luglio	31	3,98
agosto	31	3,86
settembre	30	3,50
ottobre	31	2,96
novembre	30	2,68
dicembre	31	2,48

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ acqua \ sanitaria \\ Q_{W,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ acqua \ sanitaria \\ Q_{W,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ acqua \ sanitaria \\ \eta_{W,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot} \qquad \qquad \text{Rendimento mensile del generatore rispetto all'energia primaria totale}$

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto acqua calda sanitaria

Mese	99	Q _{w,gn,in} [kWh]	Q _{W,aux} [kWh]	Q _{W,p,nren} [kWh]	Q _{W,p,tot} [kWh]
gennaio	31	462	462	801	1784
febbraio	28	400	400	624	1518
marzo	31	396	396	461	1456
aprile	30	355	355	53	1087
maggio	31	311	311	0	1017
giugno	30	265	265	0	940
luglio	31	262	262	0	956
agosto	31	271	271	0	967
settembre	30	292	292	0	973
ottobre	31	364	364	328	1319
novembre	30	395	395	649	1571
dicembre	31	446	446	779	1748
TOTALI	365	4218	4218	3695	15338

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $Q_{W,gn,in}$ Energia termica totale in ingresso al sottosistema di generazione per acqua sanitaria

Q_{W,aux} Fabbisogno elettrico totale per acqua sanitaria

 $Q_{W,p,nren}$ Fabbisogno di energia primaria non rinnovabile per acqua sanitaria

 $Q_{W,p,tot}$ Fabbisogno di energia primaria totale per acqua sanitaria

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
258	372	594	750	926	1023	1121	970	707	473	254	223

Fabbisogno di energia primaria non rinnovabile	$Q_{W,p,nren}$	3695	kWh/anno
Fabbisogno di energia primaria totale	$Q_{W,p,tot}$	15338	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{W,g,p,nren}$	280,7	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	$\eta_{W,g,p,tot}$	67,6	%
Consumo di energia elettrica effettivo		1895	kWh/anno

FABBISOGNI E CONSUMI TOTALI

Edificio : Spogliatoi Stadio Baseball Valter Aluffi	DPR 412/93	E.6 (3)	Superficie utile	154,15	m ²	
--	------------	---------	------------------	--------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	22073	29918	51991	143,19	194,08	337,28
Acqua calda sanitaria	7587	23233	30820	49,22	150,72	199,93
Illuminazione	3333	3412	6745	21,62	22,14	43,76
TOTALE	32993	56563	89557	214,03	366,94	580,97

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	16920	kWhel/anno	7783	Riscaldamento, Acqua calda sanitaria, Illuminazione

Zona 1 : Spogliatoi ospiti	DPR 412/93	E.6 (3)	Superficie utile	77,00	m ²	
----------------------------	------------	---------	------------------	-------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	11463	15282	26746	148,87	198,47	347,35
Acqua calda sanitaria	3892	11590	15482	50,55	150,52	201,06
Illuminazione	1681	1655	3337	21,84	21,50	43,33
TOTALE	17037	28527	45564	221,25	370,49	591,74

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	8737	kWhel/anno	4019	Riscaldamento, Acqua calda sanitaria, Illuminazione

Zona 2 : Spogliatoi casa	DPR 412/93	E.6 (3)	Superficie utile	77,15	m ²	
--------------------------	------------	---------	------------------	-------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	10610	14636	25246	137,53	189,70	327,23
Acqua calda sanitaria	3695	11643	15338	47,89	150,92	198,81
Illuminazione	1652	1759	3410	21,41	22,79	44,20
TOTALE	15957	28038	43994	206,83	363,42	570,24

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	8183	kWhel/anno	3764	Riscaldamento, Acqua calda sanitaria, Illuminazione

PANNELLI SOLARI FOTOVOLTAICI

Zona 1 : Spogliatoi ospiti

Energia elettrica da produzione fotovoltaica 7254 kWh/anno Fabbisogno elettrico totale dell'impianto 13624 kWh/anno Percentuale di copertura del fabbisogno annuo 35,9 %

Energia elettrica da rete 8737 kWh/anno Energia elettrica prodotta e non consumata 2366 kWh/anno

Energia elettrica mensile dell'impianto fotovoltaico (Eel,pv,out)

Mese	E _{el,pv,out} [kWh]
Gennaio	215
Febbraio	324
Marzo	544
Aprile	718
Maggio	912
Giugno	1021
Luglio	1111
Agosto	936
Settembre	656
Ottobre	419
Novembre	217
Dicembre	182
TOTALI	7254

Descrizione sottocampo: Sottocampo ospiti

Modulo utilizzato *MONOCRISTALLINO*Numero di moduli *24*Potenza di picco totale *7200* Wp

Superficie utile totale *43,20* m²

Dati del singolo modulo

Potenza di picco W_{pv} 300 W_p Superficie utile A_{pv} 1,80 m^2 Fattore di efficienza f_{pv} 0,75 - Efficienza nominale 0,17 -

Dati posizionamento pannelli

Orientamento rispetto al sud γ 90,0 ° Inclinazione rispetto al piano orizzontale β 10,0 ° Coefficiente di riflettenza (albedo) 0,26

Ombreggiamento (nessuno)

Energia elettrica mensile prodotta dal sottocampo

Mese	E _{pv} [kWh/m²]	E _{el,pv,out} [kWh]
gennaio	39,8	215
febbraio	60,0	324
marzo	100,7	544
aprile	132,9	718
maggio	168,9	912
giugno	189,0	1021
luglio	205,7	1111
agosto	173,4	936
settembre	121,5	656
ottobre	77,6	419
novembre	40,1	217
dicembre	33,8	182
TOTALI	1343,3	7254

E_{pv} Irradiazione solare mensile incidente sull'impianto fotovoltaico

Eel,pv,out Energia elettrica mensile prodotta dal sottocampo

Zona 2 : Spogliatoi casa

Energia elettrica da produzione fotovoltaica 7672 kWh/anno Fabbisogno elettrico totale dell'impianto 13422 kWh/anno

Percentuale di copertura del fabbisogno annuo 39,0 %

Energia elettrica da rete 8183 kWh/anno Energia elettrica prodotta e non consumata 2433 kWh/anno

Energia elettrica mensile dell'impianto fotovoltaico (E_{el,pv,out})

Mese	E _{el,pv,out} [kWh]
Gennaio	<i>258</i>
Febbraio	372
Marzo	594
Aprile	750
Maggio	926
Giugno	1023
Luglio	1121
Agosto	970
Settembre	707
Ottobre	473
Novembre	254
Dicembre	223
TOTALI	7672

Descrizione sottocampo: Sottocampo casa

Modulo utilizzato *MONOCRISTALLINO*Numero di moduli 24

Potenza di picco totale 7200 Wp

Superficie utile totale 43,20 m²

Dati del singolo modulo

Potenza di picco W_{pv} 300 W_p Superficie utile A_{pv} 1,80 m^2 Fattore di efficienza f_{pv} 0,75 - Efficienza nominale 0,17 -

Dati posizionamento pannelli

Orientamento rispetto al sud γ 30,0 Inclinazione rispetto al piano orizzontale β 10,0 Coefficiente di riflettenza (albedo) 0,26

Ombreggiamento (nessuno)

Energia elettrica mensile prodotta dal sottocampo

Mese	E _{pv} [kWh/m²]	E _{el,pv,out} [kWh]
gennaio	47,8	258
febbraio	68,9	372
marzo	109,9	594
aprile	138,9	750
maggio	171,5	926
giugno	189,5	1023
luglio	207,6	1121
agosto	179,6	970
settembre	131,0	707
ottobre	87,6	473
novembre	47,1	254
dicembre	41,3	223
TOTALI	1420,8	7672

Legenda simboli

E_{pv} Irradiazione solare mensile incidente sull'impianto fotovoltaico

E_{el,pv,out} Energia elettrica mensile prodotta dal sottocampo

PLANIMETRIE CON LEGENDA COMPONENTI

